Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Фотометрический анализ

Читайте также:
  1. Cравнительно-исторический анализ нации и национализма Эрика Хобсбаума
  2. I. Исследования в области социальной мобильности и анализ социальной структуры
  3. II. Сравнительный анализ
  4. III. Анализ рынка и стратегия маркетинга
  5. III. Анализ хода воспитательного мероприятия.
  6. IV. Анализ кредиторской задолженности
  7. IV.4. АНАЛИЗ ТРАГЕДИИ ЭСХИЛА «ПЕРСЫ» В КОНТЕКСТЕ КУЛЬТУРЫ.

Объекты определения. Фотометрические реакции. Напомним, что поглощение молекул (ионов, комплексных соединений и т.п.) в УФ- и видимой областях спектра связано с электронными переходами. Однако кванты соответствующей энергии поглощают далеко не все молекулы. Из неорганических соединений в этих областях спектра определяют по собственному поглощению лишь те соединения, молекулы или ионы которых содержат d - или f -элементы (например, соли меди, никеля, кобальта; перманганат калия, соли р.з.э.), а также некоторые комплексные соединения (например, роданидные комплексы железа, молибдатные гетерополикомплексы фосфора). В той же области длин волн поглощают многие органические соединения, преимущественно непредельные и ароматические углеводороды, а также их производные (фенолы, альдегиды, кислоты, амины и т.п.). В структуре соответствующих органических молекул должны быть так называемые хромофорные системы. Например, определенные комбинации π-связей или неподеленных электронных пар. На поглощение света хромофорной системой влияют и некоторые функциональные группы (ауксохромы), в частности, гидроксильные или аминные группы, если они есть в соответствующей молекуле. А вот предельные углеводороды, не имеющие π-связей или неподеленных электронных пар, свет в области 200-800 нм не поглощают. Определять содержание предельных углеводородов по собственному светопоглощению можно лишь в ИК-области спектра.

Таким образом, по собственному светопоглощению можно определять лишь немногие вещества. Для определения других веществ (Х) придется проводить так называемые фотометрические реакции. Это означает, что после перевода пробы в раствор надо будет добавить туда подходящий реагент R, взяв его в избытке по сравнению с определяемым веществом. В результате реакции Х + R = Y определяемый компонент должен количественно перейти в новое соединение Y, интенсивно поглощающее в видимой или УФ-области спектра. Например, определяя ионы Fe3+, в качестве фотометрического реагента используют роданид калия. При этом образуется смесь интенсивно окрашенных роданидных комплексов железа, раствор приобретает кроваво-красную окраску. После завершения фотометрической реакции измеряют оптическую плотность полученного раствора. Градуировочные графики в таких случаях строят по стандартным растворам Х. Они представляют собой зависимость оптической плотности раствора Y от начальной концентрации Х. Концентрацию Х в пробе можно рассчитать не только по градуировочному графику, но и другими традиционными способами (метод сравнения с одним эталоном, метод добавок). К фотометрическим реакциям предъявляют примерно те же требования, что и к реакциям, используемым в химических методах анализа (полнота протекания, быстрое установление равновесия, стехиометрический характер реакции, устойчивость продуктов во времени и т.п.). Кроме реакций комплексообразования, для получения интенсивно поглощающих соединений иногда используют процессы окисления-восстановления, а также некоторые реакции органического синтеза. Так, для определения фенолов их связывают с аминами и нитрит-ионами, при этом образуется органический азокраситель (реакция Грисса).

Спектры поглощения. Выбор условий фотометрического анализа. Чтобы выбрать оптимальные условия анализа, после проведения фотометрической реакции исследуют спектр поглощения полученного соединения. Вид конкретного спектра и значения вышеперечисленных характеристик определяются природой поглощающих частиц. Спектры поглощения меняются в результате диссоциации, комплексообразования, окислительно-восстановительных реакций и других процессов, в которых принимают участие частицы этого вещества. Кроме того, на спектр поглощения растворенного вещества влияют природа растворителя, рН, ионная сила и температура раствора. Спектр поглощения отдельного раствора строят в координатах А - l. При изменении толщины поглощающего слоя или при разбавлении раствора спектральная кривая будет сдвигаться по вертикали (рис.6.22), но число максимумов на этой кривой и их положение в шкале длин волн не изменятся.

Рис.6.22. Спектры поглощения растворов с разной концентрацией Х и их обобщение

Длину волны, при которой наблюдается максимальное поглощение, обозначают как lmax , а молярный коэффициент на этой длине волны – как εmax. Зависимость ε от l (или lg ε от l) характеризует все растворы данного состава. Она не меняется при изменении концентрации растворенного вещества или толщины поглощающего слоя. Именно такие «обобщенные» спектры поглощения индивидуальных веществ приводят в спектральных атласах.Чем больше εmax, тем меньшие концентрации Х можно определять по данной методике, то есть εmax - это характеристика предельной чувствительности методики. У большинства окрашенных веществ εmax ≈ n.103, и соответствующие методики анализа приводят к пределам обнаружения порядка 10-5 моль/л. Некоторые, наиболее интенсивно поглощающие вещества имеют εmax порядка 104 - 105, что позволяет снизить пределы обнаружения до 10-6 - 10-7 моль/л.

Выбор аналитической длины волны. Если проба содержит только один компонент, поглощающий свет, то в качестве аналитической длины волны выбирают lmax, что обеспечивает максимальную чувствительность (см. рис. 6.19). Если же в растворе надо определять два и более компонента по отдельности, аналитические длины волн выбирают так, чтобы на каждой поглощал бы лишь один компонент. Это не всегда удается: в молекулярных спектрах полосы поглощения достаточно широки и часто накладываются друг на друга. В таких случаях селективность фотометрического анализа обеспечивают, проводя соответствующую пробоподготовку. Например, маскируют или заранее отделяют один из компонентов. Существуют и математические методы, позволяющие рассчитывать концентрации компонентов по спектру поглощения смеси, однако добиться высокой точности анализа в этом случае нелегко. При проведении измерений на ФЭКе необходимо выбрать подходящий светофильтр. Общее правило – светофильтр должен в максимальной степени пропускать свет в области поглощения фотометрируемого соединения. Если спектральные характеристики фотоэлемента неизвестны, светофильтр можно выбрать по видимой окраске раствора (табл.6.2). Правило следующее – цвет светофильтра должен быть дополнительным к цвету раствора. Выбор светофильтра при работе на фотоэлектроколориметре

Выбор кюветы. Рекомендуется проводить измерения в диапазоне значений А от 0,1 до 0,8 единиц. Если величина молярного коэффициента известна, то можно расчетным способом подобрать либо концентрацию, либо толщину слоя раствора, обеспечивающие именно такие значения оптической плотности. Второй способ предпочтительнее, так как в распоряжении аналитика есть набор кювет с разной толщиной слоя – от 0,1 до 10 см. Естественно, чем меньше ожидаемая концентрация раствора и чем меньше величина e, тем больше должна быть толщина слоя (длина кюветы). Однако с увеличением длины кюветы возрастают потери за счет рассеяния света. На практике чаще всего используют кюветы с толщиной слоя 1 см.

 


Дата добавления: 2015-11-26; просмотров: 128 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.006 сек.)