Читайте также: |
|
Далее нас ждет доска 5-го порядка, поскольку 5 — следующее число в последовательности (1), для которого мы пока не вывели доказательства. Если убрать центральную клетку, полученную фигуру можно покрыть очень аккуратно и симметрично (как показано на рис. 4. слева). Я покрыл эту доску четырьмя элементами 2×3. Каждый из них можно в свою очередь двумя различными способами покрыть двумя тримино. Покрытия 2×3 — очень полезный инструмент при решении задач с тримино. Когда недостающая клетка расположена, как показано черным на рис. 4 (средний квадрат), клетку над ней, как нетрудно убедиться, приходится покрывать с помощью тримино, примыкающего слева или справа. В любом случае у нас появятся две свободное клетки (они обозначены как 1 и 2), которые нельзя покрыть тримино. И в самом деле, квадрат 5-го порядка можно покрыть тримино, только если недостающая клетка находится в одной из позиций, обозначенных черным на рис. 4. справа. Вот вам приятное упражнение: посмотрите, удастся ли вам покрыть доску, если вырезанная клетка находится в углу.
Рис. 4. Квадрат 5-го порядка
Доску 7-го порядка анализировать гораздо труднее. Я не сумел придумать одиночную диаграмму, которая доказывала бы, что такую доску можно покрыть тримино, однако Голомб прислал мне свое неопубликованное доказательство, где он использует три диаграммы.
Рис. 5. Квадрат 7-го порядка можно покрыть тримино (доказательство Голомба)
Его доказательство развивается так. На рис. 5 показаны три способа покрытия доски 7-го порядка. Очевидно, что при каждом таком покрытии квадрат 2×2 можно покрыть с помощью тримино, если недостающая клетка находится в любом из его четырех углов. Поворачивая эти три фигуры, можно добиться того, чтобы недостающая клетка приходилась на любое место доски.
Несколько труднее придумать, как покрыть доски с помощью максимального количества элементов 2×3. Вот вам задачка: сможете ли вы покрыть доску 7×7 с помощью шести элементов 2×3 и четырех тримино (рис. 6)? Решение — единственное (если не считать его зеркального отражения). (Это решение приводится на с. 204).
Рис. 6. Задача
Посмотрев на рис. 5, можно отметить, что для каждого приведенного разбиения количество свободных тримино (не входящих в элементы 2×3) оказывается четным. И это не совпадение. Мне удалось вывести следующий тривиальный закончик. Когда порядок доски — четный, количество свободных тримино при покрытии — нечетное, и наоборот: когда порядок доски — нечетный, число свободных тримино должно быть четным.
Доказать эти равенства просто. Если доска имеет четный порядок, то после удаления одной клетки количество тримино при любом способе покрытия составит величину, равную (n2–1)/3, т. е. нечетное число. В каждом элементе 2×3 содержится два тримино, а значит, общее количество тримино, входящих в состав элементов 2×3, неминуемо окажется четным. Если вычесть это четное число из общего числа тримино (а оно — нечетное), мы получим нечетное число тримино, не входящих ни в один элемент 2×3.
Пусть доска имеет нечетный порядок. После удаления одной клетки на доске останется четное число клеток. «Вычтем» из него четное число тримино, входящих в элементы 2×3, и получим четное число тримино, в такие элементы не входящих.
Дата добавления: 2015-10-30; просмотров: 138 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Покрытие «изуродованных» шахматных досок с помощью L-тримино | | | Выше 7-го порядка |