Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Grand designs

Читайте также:
  1. A GRAND OLD-FASHIONED JOURNEY
  2. A GRANDE INQUISIDORA DE HOGWARTS
  3. CHAPTER NINETEEN: A GRAND OLD-FASHIONED JOURNEY
  4. Chapter VIII. In which Piglet does a very grand thing
  5. Grand Atlantic Ocean Resort
  6. Grandma's (Handmade) Homemade Buttermilk Biscuits

The power of being made very small

Nano-engineering can produce substances with unique properties that will give renewable energy a boost

BIG improvements in the production of energy, especially from renewable sources, are expected over the coming years. Safer nuclear-power stations, highly efficient solar cells and the ability to extract more energy from the wind and the sea are among the things promised. But important breakthroughs will be needed for these advances to happen, mostly because they require extraordinary new materials.

The way researchers will construct these materials is now becoming clear. They will engineer them at the nanoscale, where things are measured in billionths of a metre. At such a small size materials can have unique properties. And sometimes these properties can be used to provide desirable features, especially when substances are formed into a composite structure that combines a number of abilities. A series of recent developments shows how great that potential might be.

Grand designs

Researchers have already become much better at understanding how the structure of new nano-engineered materials will behave, although the process remains largely one of trial and error because different samples have to be repeatedly manufactured and tested. Michael Demkowicz of the Massachusetts Institute of Technology is developing a model that he hopes will address the problem from a different direction: specifying a set of desired properties and then trying to predict the nanostructures needed to deliver them.

Dr Demkowicz is working with a team based at the Los Alamos National Laboratory, one of a number of groups being funded under a new $777m five-year programme by the American government to accelerate research into energy technologies. The material Dr Demkowicz is looking for will be good at resisting damage from radiation. It could be used instead of stainless steel to line a nuclear reactor, which would extend the reactor’s working life and allow it to be operated more efficiently by burning a higher percentage of nuclear fuel. At present, says Dr Demkowicz, reactors burn only around 1% of their fuel, so even a modest increase in fuel burn would leave less radioactive waste.

The reason why the linings of nuclear reactors degrade is that metals can become brittle and weak when they are exposed to radiation. This weakness is caused by defects forming in their crystal-lattice structure, which in turn are caused by high-energy particles such as neutrons bumping into individual atoms and knocking them out of place. When these displaced atoms collide with other atoms, the damage spreads. The result is holes, or “vacancies”, and “interstitials”, where additional atoms have squeezed into the structure.

Dr Demkowicz says it is possible to design nanocomposites with a structure that resists radiation damage. This is because they can be made to exhibit a sort of healing effect in the areas between their different layers. The thinner these layers are, the more important these interfaces become because they make up more of the total volume of the material. Depending on how the nanocomposites are constructed, both the vacancies and the interstitials get trapped at the interfaces. This means there is a greater chance of their meeting one another, allowing an extra atom to fill a hole and restore the crystal structure. In some conditions the effect can appear to show no radiation damage at all, he adds.

The ideal nanocomposite would not only resist radiation damage. It would also not itself become radioactive by absorbing neutrons. Dr Demkowicz has used his modelling techniques to come up with some candidates; iron-based ones for fission reactors and tungsten-based ones for those that may one day use nuclear fusion. It could still take years before such materials are approved for use, but the modelling methods will greatly speed up the process.


Дата добавления: 2015-10-29; просмотров: 147 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Match the words on the left with their definitions on the right.| Read the people’s descriptions of their accommodations and then describe your own present dwelling by analogy.

mybiblioteka.su - 2015-2024 год. (0.008 сек.)