Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Особенности органа зрения у детей. Стекловидное тело заполняет полость глаза между хрусталиком и сетчаткой и имеет

Читайте также:
  1. C.1 Процессы с ключевых точек зрения
  2. II. Климатические особенности района
  3. III. особенности обследования больного с перитонитом
  4. IV. Особенности философского метода и логики (теоретическое и эмпирическое знание, индукция и дедукция, формальная и диалектическая логика).
  5. V2: Анатомия венозной системы. Кровообращение плода и особенности кровеносного русла плода.
  6. XVI. Требования к составлению меню для организации питания детей разного возраста
  7. Агентские (посреднические) операции коммерческого банка и особенности их проведения. Виды банковских финансовых услуг, международные операции коммерческого банка.

Стекловидное тело заполняет полость глаза между хрусталиком и сетчаткой и имеет желеобразную консистенцию. Оно представляет собой гидрофильную коллоидную систему, дисперсной фазой которой является сложный белок витреин с выраженным гигроскопическим эффектом и гиалуроновая кислота. При фиксации белок коагулирует и стекловидное тело приобретает сетчатое строение. В стекловидном теле обнаружены рыхло расположенные клетки: лимфоцитарного характера, веретенообразные, пузырчатые. Индекс преломления стекловидного тела составляет 1,334. Стекловидное тело содержит до 98% воды, 2% белков, солей, ГАГ.

На передней поверхности стекловидного тела имеется ямка, в которой располагается хрусталик.

Стекловидное тело участвует в метаболизме сетчатки, пропуская через себя метаболиты, является преломляющей свет средой. Кроме того, стекловидное тело способствует прилеганию внутреннего слоя сетчатки к наружному пигментному. В ряде случаев, при травме и хирургических вмешательствах может вытекать часть стекловидного тела, что уменьшает давление на сетчатку и приводит к отхождению внутреннего слоя сетчатки от пигментного. Это явление – отслойки сетчатки.

Сетчатая оболочка (сетчатка) – представляет собой внутреннюю оболочку глазного яблока. Она продолжается спереди на цилиарное тело и радужку. В связи с этим в сетчатке различают цилиарную, радужную и зрительную части. Сетчатка состоит из 2-х листков: светочувствительного, содержащего фоторецепторные клетки и развивающегося из внутреннего листка глазного бокала, и наружного - пигментного, развивающегося из наружного листка глазного бокала. Хотя пигментный эпителий и фоторецепторный отдел в процессе развития постепенно приходят в соприкосновение и прилегают друг к другу, но в ряде случаев (травма) может наблюдаться отхождение их друг от друга. Это и есть отслойка сетчатки. Поскольку нервная (фоторецепторная) часть сетчатки зависит от питательных веществ, которые диффундируют из сосудистой оболочки через пигментный эпителий, отслоившаяся нервная часть претерпевает дегенеративные изменения, если не вернуть её в нормальное положение.

Пигментный эпителий состоит из низких призматических клеток правильной 5-6 гранной формы, лежащих на базальной мембране. В клетках содержится 1-2 ядра. От внутренней поверхности клеток отходят 8-10 тонких цитоплазматических отростков, которые заполнены гранулами пигмента меланина – борода пигментного эпителия. Положение пигментных зерен в клетках меняется в зависимости от силы освещения. На ярком свету гранулы спускаются в отростки клеток пигментного эпителия и разграничивают светочувствительные части палочек и колбочек, предохраняя их от перераздражения.

В процессе развития слой пигментного эпителия определяет размеры палочек и колбочек, поставляет ретиналь, осуществляет трофику рецепторных клеток и фагоцитирует сношенные диски палочек.

Внутренний светочувствительный слой сетчаткой оболочки представляет собой цепь трёх нейронов: фоторецепторного, ассоциативного и ганглиозного, который образует несколько слоев.

Самый наружный слой, обращённый к сосудистой оболочке – это слой пигментного эпителия, развивающийся из наружного листка глазного бокала. Следующим слоем сетчатки является слой палочек и колбочек, которые своими основаниями лежат в наружной пограничной мембране. За мембраной лежит наружный ядерный слой, состоящий из многочисленных ядер. Затем следует наружный сетчатый слой, представленный нервным сплетением, под которым располагается внутренний сетчатый слой, к которому прилегает ганглиозный и слой нервных волокон. От стекловидного тела сетчатка отделена внутренней пограничной мембраной.

У человека слой фоторецепторов в сетчатке состоит из приблизительно 140 млн. палочек и 5-7 млн. колбочек, получивших свое название за счет формы их периферического (чувствительного) отростка. В каждой фоторецепторной клетке, и в палочках и в колбочках, различают периферический или световоспринимающий отросток палочковидной или колбочковидной формы, тело или ядросодержащая часть и центральный (передающий) отросток.

Палочки и колбочки распределены неравномерно. В середине сетчатки преобладают колбочки (5-7 млн.), а на периферии палочки (до 140 млн.) Внутри этих клеток энергия фотонов гасится, возбуждая при этом фотохимический процесс. В фоторецепторах фотохимический процесс преобразуется в нервно-электрический.

Наружные сегменты у палочек цилиндрической формы, а у колбочек – конические.

Установлено, что при электронной микроскопии наружный сегмент палочки состоит из сдвоенных мембран-дисков, которые представляют собой складки наружной плазматической мембраны, но затем отделяются от неё и имеют вид самостоятельных дисков, а вся поверхность членика непрерывной плазмолеммой. Свободным от мембраны остаётся только окошечко в области основания наружного сегмента, где в течение всей жизни идёт образование новых дисков. Число дисков от 80 до 1100.

Наружный сегмент колбочек представляет собой сложенные, накладывающиеся в виде стопки складчатые разрастания плазматической мембраны клеток. Каждая складка называется диском. Следовательно в колбочках диски состоят из 2-х мембран и внутридискового пространства, непосредственно обращённого в окружающую межклеточную среду. Число дисков в колбочках от 100 до 800.

Наружные членики палочек и колбочек соединяются с внутренним члеником при помощи тонкого стебелька, содержащего 9 пар микротрубочек, которые заканчиваются в базальном тельце внутреннего членика.

Изучение эмбриологического материала позволяет рассматривать наружные членики палочек и колбочек, как видоизменённые мерцательные реснички. Винников А.Я. считает, что в филогенезе возникли сначала колбочки, а затем палочки.

Для ядросодержащей части палочек и колбочек характерен богатый набор элементов шероховатый и гладкой эндоплазматической сети, аппарата Гольджи, а также рибосом и полисом, синтезирующих белки. Синтезируемые белки передвигаются в периферический отросток.

Центральный отросток фоторецептора расширяется и образует сложную синаптическую структуру. Она содержит углубления, в которые вдаются отростки биполярных клеток, отростки соседних фоторецепторов горизонтальных клеток.

В наружном членике палочек обнаружен зрительный пурпур – родопсин, а в колбочках – иодопсин.

Установлено, что в процессе жизнедеятельности происходит смена не всей клетки, а только замещаются диски (у палочек) или важные компоненты полудиски – дискоты (у колбочек). Новообразование дисков осуществляется у основания наружного сегмента за счёт белка, синтезированного во внутреннем сегменте. Образовавшиеся диски постепенно перемещаются к свободному концу наружного членика по мере того, как их вытесняют возникающие под ними новые диски. Из конца наружного сегмента сношенные диски фагоцитируются клетками пигментного эпителия. Каждые 40 минут образуется новый диск. Палочки и колбочки являются светочувствительными потому, что содержат фоточувствительное вещество, которое содержится в мембране дисков.

Более 100 лет назад немецкий учёный – анатом Шульц показал, что сетчатка некоторых ночных животных содержит только палочки (например кошки, которые видят все в черно-белом изображении), а в сетчатке животных активных в дневное время (например, большинство птиц) содержатся преимущественно колбочки. Отсюда он сделал вывод о том, что палочки приспособлены к деятельности в сумерках, а колбочки – к активности при ярком свете. Далее Шульц предположил, что колбочки отвечают за цветное зрение. В настоящее время твердо установлено, что палочки отвечают за сумеречное зрение, то есть воспринимают слабый свет, действующий в темноте, а колбочки – за цветное, то есть на ярком свету. Цветное зрение, вероятно, можно объяснить наличием 3 типов зрительного сегмента в колбочках. Принято различать колбочки чувствительные только к жёлтому и красному, либо к синему, либо к зелёному цвету. Цветовое зрение связано с функционированием колбочек разного типа.

Родопсин состоит из белка опсина и простетической группы молекулы ретиналя, представляющего собой окисленный витамин А. Опсин синтезируется в ядросодержащей части рецепторной клетки. Синтез витамина А осуществляется в печени из каратиноидов растений, поступающих с пищей. В пигментном слое сетчатки витамин А, окисляясь в альдегид, превращается в ретиналь, который соединяется с опсином.

При длительном А – авитаминозе наблюдается дегенерация мембран дисков наружных сегментов палочек и колбочек, но при употреблении витамина А происходит их регенерация.

Согласно новейшим данным весь блок фоторецепторной мембраны дисков на 92-95 % состоит из опсина. Однако вопрос о точной локализации родопсина ещё не решён.

При сканирующей электронной микроскопии установлено, что родопсин лежит во внутреннем белковом слое палочек.

В колбочках иодопсин лежит в наружном белковом слое и обращён во внешнюю среду. Наружная локализация белков облегчает их контакты со стимулами из внешней среды. Это имеет решающее значение для функции мембран, т. к. при действии стимула белковая молекула меняет свою конфигурацию. Такое изменение конфигурации является кодирующим, т.к. приводит к изменению проницаемости мембран дисков для ионов калия и натрия. Ионы калия устремляются через мембрану в наружную среду, а ионы натрия устремляются в клетку. Встречные потоки ионов приводят к деполяризации мембраны дисков. Это можно видеть при электронной гистохимии.

Соединение опсина и ретиналя осуществляется только в темноте. При освещении поглощение фотона света молекулой родопсина ведёт к тому, что гетерогенная молекула распадается на ретиналь и опсин. Превращения иодопсина колбочек на свету и в темноте совпадают с превращениями родопсина. Молекулярные превращения зрительного пигмента в дисках рассматриваются как пусковой механизм для возбуждения фоторецепторов. При световых воздействиях мембраны дисков уменьшаются и сближаются. При сильных и длительных воздействиях наблюдается разрушение мембран фоторецепторов. Во внутреннем зернистом слое лежат нейроны двух видов – биполярные, горизонтальные и амакриновые клетки.

Биполярные нейроны своими дендритами контактируют с центральными ганглиозными отростками фоторецепторов в наружном сетчатом слое, а аксоном – с ганглиозными клетками во внутреннем сетчатом слое. Биполярные клетки имеют радиальную ориентацию. Размеры, характер расположения и ветвления у разных биполярных клеток неодинаковы. Горизонтальные клетки являются мультиполярными и залегают чаще в 2 слоя, размеры клеток в которых различны. Эти клетки являются ассоциативными. Они своими отростками объединяют фоторецепторные нейроны. Установлена связь с биполярными клетками. Ряд исследователей предполагает, что горизонтальные клетки образуют синаптические передачи с фоторецепторами и биополярами.

Во внутреннем ядерном слое располагается ещё один вид ассоциативных клеток – амакриновые, т.е. клетки, не имеющие длинных отростков. Они являются истинными униполярными. Их короткий отросток распространяется во внутреннем сетчатом слое и контактирует с дендритами ганглиозных клеток. Амакриновые и горизонтальные клетки выполняют функции блокирования нервного импульса.

Ганглиозные клетки являются самыми крупными нервными элементами сетчатки, и имеют мультиполярную форму. Дендриты их очень разветвлены и заканчиваются на разных уровнях во внутреннем сетчатом слое контактами с биполярными нейронами. В цитоплазме ганглиозных клеток хорошо выражено тигроидное вещество. Аксоны нейронов не ветвятся и составляют слой нервных волокон, которые радиально собираются в слепом пятне сетчатки. Здесь они одеваются миелиновой оболочкой, собираются в зрительный нерв, который после перекреста заканчивается в подкорковых зрительных центрах. В составе зрительного нерва приблизительно 1 млн. волокон.

В оптической части сетчатки имеются, таким образом, два важных в функциональном плане участков. Один из них представляет место выхода зрительного нерва – слепое пятно, а другой – точка наилучшего видения – жёлтое пятно, которое располагается близко к заднему полюсу глаза, т.е. находится приблизительно на оптической оси глаза. Здесь клетки и волокна внутренних слоев расходятся и истончаются таким образом, что фоторецепторные клетки здесь прикрыты в такой степени, как в других участках. В этой области нет кровеносных сосудов. Фоторецепторы представлены здесь колбочками. Таким образом, область жёлтого пятна специализирована для максимальной остроты зрения. Только те изображения, которые формируются здесь, воспринимаются мозгом ясно и четко.

Нейроглия сетчатки представлена видоизменённой астроцитной глией, открытой Мюллером и названной мюллеровыми волокнами. Мюллеровы волокна располагаются радиально, длинные и узкие, их ядра располагаются на уровне ядер биполяров. Мюллеровы волокна заканчиваются на поверхности фоторецепторов синоптическими комплексами. По своей длине мюллеровы волокна дают многочисленные отростки, образующие петлистый остов для нейронов сетчатки. На границе слоя палочек и колбочек и наружного ядерного слоя, а так же на границе со стекловидным телом глиальные элементы образуют соответственно наружную и внутреннюю пограничную мембрану.

Глаз человека способен воспринимать электромагнитные волны длиной от 400 до 700 нм. Родопсин лучше всего воспринимает волны длиной около 510 нм (зеленая часть спектра), а колбочки – около 430 нм (синяя часть спектра), 530 нм (зеленая) и 560 нм (красная). Однако, каждый рецептор воспринимает не только свет указанной длины волны, он лучше реагирует именно на волны этой длины.

 

 

Особенности органа зрения у детей

Несмотря на то, что орган зрения закладывается еще на 3 неделе эмбриогенеза, у новорожденных детей развитие зрительного анализатора не завершено. Окончательное структурно-функциональное становление его наблюдается в возрасте 7 лет. Глаза новорожденного, представляющие собой периферический отдел зрительного анализатора, более крупные (приблизительно в 3 раза), чем у взрослого человека. После рождения глазное яблоко ребенка растет медленно и к 5 годам увеличивается только на 5 мм.

Роговица у новорожденного имеет относительно большую величину и выступает сильно вперед. В силу недоразвития черепномозговых нервов (в том числе лицевого и тройничного) в первые месяцы жизни ребенка роговица обладает малой чувствительностью. Склера у ребенка тонкая, но более эластичная, чем у взрослого, сквозь нее просвечивается пигментированная сосудистая оболочка, что обусловливает несколько голубоватый цвет склеры. Хрусталик почти округлой формы, причем радиус кривизны передней и задней поверхности одинаковы. Хрусталиковые волокна у ребенка характеризуются высоким содержанием воды и незначительного количества неорганических соединений, в силу чего они обладают большей, чем у взрослых, эластичностью. После 10 лет эластичность хрусталика начинает снижаться. Сосудистая оболочка у детей первых лет жизни тонкая, содержит мало хроматофоров с небольшим запасом пигмента. Цилиарное тело развито слабо, а цилиарная мышца тонкая и короткая, слабо иннервирована. Радужная оболочка у новорожденных детей выпуклая, имеет воронкообразную форму и содержит мало пигмента. Мышца расширяющая зрачок развита слабо, поэтому у детей первых лет превалирует сфинктер, в силу чего зрачок сужен до 2мм и слабо реагирует на свет и слабо расширяется. Структурно-функциональное становление различных отделов сосудистой оболочки, в основном, происходит на 2 году жизни ребенка, а окончательное развитие завершается к 7 годам.

Несмотря на то, что палочковый аппарат на периферии сетчатки развит, периферическое зрение появляется только на 6 месяце жизни, поэтому для детей первых лет жизни свойственно узкое поле зрения. Окончательное становление этого показателя имеет место в возрасте 16-18 лет. До 6-8 лет для большинства детей характерна небольшая дальнозоркость, обусловленная, прежде всего, короткой переднезадней оси глаза, в силу чего фокус оптической системы находится за пределами сетчатки. В то же время у 30-40% детей наблюдается чрезмерное увеличение переднезаднего размера глаза, в результате чего у них развивается близорукость (миопия), обусловливающая необходимость пользоваться очками с рассеивающими линзами. Помимо наследственного фактора развитию близорукости способствует длительное (систематическое) рассматривание близких предметов (телевизор, компьютер, книжный текст), что сопровождается повышением тонуса наружных мышц и длительным сокращением ресничной мышцы. В связи с этим необходимо следить, чтобы дети длительное время не находились у телевизора, за работой на компьютере, приучались держать рассматриваемые предметы на расстоянии 35-40 см от глаз.

Колбочки имеют округлую форму и располагаются более плотно. Только в возрасте 5-6 месяцев дети начинают выбирать игрушки по цвету. Однако осознанное ощущение цвета формируется к 3 годам жизни ребенка и именно с этого возраста он начинает правильно определять цвет окрашенных предметов и игрушек.

Зрительный нерв тонкий, нервные волокна его слабо миелинизированы. Процесс миелинизации завершается к 6 месяцам жизни ребенка. Слезная железа развита слабо: малых размеров, концевые отделы слабо развиты, выводные протоки узкие. Слезная железа начинает продуцировать слезную жидкость лишь на 2 месяце жизни ребенка с момента начала функционирования черепномозговых нервов и вегетативной нервной системы. Таким образом ребенок в течение 1,5 – 2 месяцев «плачет без слез».

 


Дата добавления: 2015-10-29; просмотров: 99 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Риск и доходность финансовых активов. Модель САРМ.| При подборе помещения следует побеспокоиться о решении вопросов с пожарной службой и соответствии здания противопожарной безопасности.

mybiblioteka.su - 2015-2024 год. (0.011 сек.)