Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Band structure of semiconductor crystals

Читайте также:
  1. A) Consider the diagram illustrating an approximate administrative structure of a University
  2. Act as an interpreter. Translate the description of N-type and P-type- semiconductors given by your group mates from English into Russian.
  3. Active Horsetail Splay Structure in the Cenozoic Magmatic arc of Iran
  4. Analysing setting and plot structure of the text
  5. Basic curricula!- structure
  6. BODY STRUCTURE

 

The semiconductor crystal is composed of a large number of periodically positioned atoms of which the former energy levels split into a large number of closely neighboring levels. These energy states form the so-called " bands " that are separated by band gaps.

 

In the ground state, the bands are filled up with the existing electrons, according to the Pauli principle, beginning with the lowest energy. The highest completely populated band is called the valence band, the next higher one the conduction band.

 

 

Joining a p - and an n -semiconductor creates a very thin pn junction with locally shifted energy bands. To create a population inversion, necessary for optical gain and laser oscillation, an external electric field is applied to the diode (+ to p -type, – to n -type).

 

Parabolic bands

 

E c = E c0+ ħ 2 k 2/2 m c energy of electrons

 

E v = E v0ħ 2 k 2/2 m v energy of holes

 

E g = E c0E v0 energy gap

 

 

Density of states

 

rc(E c) = (1/2p2) (2 m c/ ħ 2)3/2 (E cE co)1/2 (cm-3 eV-1)

 

 

Fermion statistics

Fermi–Dirac functions

 

f e(E c) = (1+exp(E cF e)/ kT)-1

 

f h(E v) = (1+exp(F hE v)/ kT)-1 = 1– f e(E v),

 

kT thermal energy

 

 

F e quasi-Fermi level for electrons

 

F h quasi-Fermi level for holes

 

Δ F = F eF h

 

Carrier concentrations

 

n = N c F 1/2c/ kT)

 

ζc = F eE c0 chemical potential for electrons

 

N c ~ (m c kT)3/2 effective density of states (cm-3)

 

F 1/2c/ kT) Fermi integral of index 1/2

 

 

Analogically we have for holes

 

p = N v F 1/2v/ kT)

 

ζv = E voF h chemical potential for holes

 

N v ~ (m v kT)3/2 effective density of states (cm-3)

 

n, p ~ T 3/2

n ­ p ­ at F e ­ and F h ¯ or Δ F = F eF h ­ (excitation level)

 

At thermodynamical equilibrium we have Δ F º 0.

 

Inversing condition (optical gain and lasing): Δ F ³ E g

 

Electron impulse space in crystalline semiconductors

 

Brillouin zone of the face centered cubic lattice, the Bravais lattice of the diamond and zinc blende structures.

 

 

 

Brillouin zone of the hexagonal lattice.

 

Elementary semiconductors

 

Si received in pure matter by Bercelius (Sweden) (1825)

Ge obtained by Winkler (Germany) (1886),

predicted by Mendeleyev (Russia) (1871)


Дата добавления: 2015-10-29; просмотров: 172 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Рекомендации по заполнению таблицы| Expérience 2. Le rôle de la sérum-albumine au cours du transport des acides gras supérieurs dans le sang.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)