Читайте также:
|
|
Решение: «Геронов фонтан» работает следующим образом. Вода из верхнего бака по трубе А сливается в нижней герметично закрытый, сжимая тем самым и вытесняя по трубе В воздух в средний герметичный бак. Под давлением сжатого в среднем баке воздуха вода из него по трубе Б с большой скоростью поднимается вверх, образуя фонтан. Скорость истечения воды из насадка на трубе Б определяется по известной формуле:
υ =
= .
В данном случае величины взяты со знаком (-), т.к. располагаемый геометрический напор в виде , будет расходоваться на подъем воды на высоту и на трансформацию в скоростной напор.
38. Вода по трубе Т подается в резервуар А, откуда через сопло диаметром =9мм перетекает в резервуар Б. далее через внешний цилиндрический насадок =10мм вода попадает в резервуар В и, наконец вытекает в атмосферу через внешний цилиндрический насадок =6мм. При этом Н=1,1м; b=25мм. Определить расход воды через систему и перепады уровней . Коэффициенты истечения принять:
Решение: Так как вода перетекает из одного резервуара в другой при установившихся уровнях в них, то расходы через насадки будут одинаковы, т.е.
.
Первые два насадка подтоплены и в качестве действующих напоров здесь будут выступать разности уровней в резервуарах. С учетом этого запишем расходы через каждый насадок:
;
;
.
В последнем уравнении все данные в правой части известны и можно определить расход воды через систему.
.
По известному расходу системы из первых двух уравнений найдем разности .
Разности уровней можно определить и по другому, приравнивая последовательно правые части первого и третьего, второго и третьего уравнений.
;
.
Сократив общие множители и возведя в квадрат оба уравнения, запишем их относительно искомых величин
;
.
Подставим численные значения величин в правой части уравнений, найдем .
.
39. Жидкость с плотностью =850кг/ подается от насоса в гидроцилиндр, а затем через отверстие в поршне площадью =5 и гидродроссель, Д в бак (рб, = 0).
1. Определить, при какой площади проходного сечения дросселя Д поршень будет находиться в неподвижном равновесии под действием силы F=3000H, если диаметр поршня D=100мм, диаметр штока Dш=80мм, коэффициент расхода отверстия в поршне =0,8, коэффициент расхода дросселя , давление насоса
2. Определить площадь проходного сечения дросселя Д, при которой поршень будет перемещаться со скоростью υ=1см/с вправо.
Решение:1. При неподвижном поршне расходы через отверстие и дроссель будут одинаковы
.
Запишем выражения для и , а затем приравняв правые части этих выражений, найдем искомую величину -сечение дросселя .
,
откуда
.
В правой части уравнения неизвестна величина давления жидкости в поршневой полости гидроцилиндра . Для того чтобы определить это давление необходимо записать уравнение равновесия поршня, на который действуют две силы давления жидкости и внешняя сила F, приложенная к штоку поршня (классический вариант нагружения поршня):
,
откуда
=
Подставив полученное значение в формулу для определения , найдем его величину:
.
1. Когда поршень будет перемещаться вправо со скоростью 1см/с, расход через отверстие будет больше чем расход через дроссель и уравнение расходов можно представить как
= υ или .
Запишем расходы через отверстие и дроссель и из полученного уравнения выразим искомую величину
= ,
откуда
=
Пояснение: В подкоренном выражении в числителе плотность измерена в кг/ поэтому появился переводной коэффициент . Аналогичным образом в знаменателе в размерности давления вместо м, записывается мм, т.е. 1МПа=1Па/мм2=1кг·м/с2·мм2 = 103кг·мм/(с2·мм2)и появился переводной коэффициент
40. Считая жидкость
несжимаемой, определить скорость движения поршня под действием силы F=10кН на штоке, диаметр поршня D=80 мм, диаметр штока d=30мм, проходное сечение дросселя =2мм2, его коэффициент расхода µ=0,75, избыточное давление слива =0, плотность рабочей жидкости =900кг/ .
Решение: Для решения этой задачи прежде всего необходимо записать уравнение расходов. Из схемы видно, что расход жидкости из поршневой полости равен сумме расходов через дроссель и в штоковую полость, т. е.
Расходы поршневой и штоковой полости можно выразить через скорость поршня и сечение штока в поршневой и штоковой полостях и исходное уравнение можно представить следующим образом:
,
или
.
Из последнего уравнения выражаем скорость поршня
.
Для определения неизвестной в правой части величины расхода через дроссель запишем известную формулу
.
Перепад давления на дросселе △р равен давлению в поршневой и штоковой полости, т. е. △р=рn=ршт, т. к. поршневая и штоковая полости и дроссель соединены трубопроводом, потери в котором равны нулю. Для определения давления нужно записать уравнение равномерного движения поршня т. е. сумму всех сил, действующих на него, приравнять к нулю. На поршень действуют две силы давления жидкости со стороны поршневой и штоковой полости и внешняя F, приложенная к штоку.
= F.
Решая это уравнение относительно искомой величины р, находим что давление равно:
По найденному давлению определим расход жидкости через дроссель
Скорость поршня:
41. Определить, пренебрегая потерями напора, начальную скорость истечения жидкости из сосуда, заполненного слоями воды и масла (относительная плотность δ=0,8) одинаковой высоты h=1м. Сравнить полученный результат с начальной скоростью истечения при заполнении сосуда только водой или только маслом до уровня 2h.
Решение: Начальная скорость истечения воды и масла определяется по формуле:
При заполнение сосуда только водой:
При заполнение сосуда только маслом
Скорость истечения получается наименьшей при заполнении сосуда только маслом в силу меньшей его, по сравнению с водой, плотности. В силу этого меньшим будет и действующий напор.
42. Вода по трубе 1 подается в открытый бак и вытекает по трубе 2. Во избежание переливания воды через край бака устроена вертикальная сливная труба 3 диаметром d=50мм. Определить необходимую длину L трубы 3 из условия, что при =10л/с и перекрытой трубе 2 ( =0) вода не переливалась через край бака. Режим течения считать турбулентным. Принять следующие значения коэффициентов сопротивления: на входе в трубу =0,5; в колене =0,5; на трение по длине трубы =0,03; a=0.
Решение: Эту задачу можно решить, используя уравнение Бернулли для двух сечений: свободная поверхность трубы - сечение 1-1 (начало потока) и конец трубы - сечение 2-2 (конец потока). Плоскость сравнения целесообразно совместить со вторым сечением. Уравнение запишем по избыточному давлению, которое в данном случае отсутствует (истечение происходит из открытого бака в атмосферу).геометрический напор для сечения 1-1 равен длине сливной трубы 2 (геометрический напор - это расстояние от центра сечения до плоскости сравнения); скоростной напор отсутствует: уровнень воды в баке постоянный. Во втором сечении будет скоростной напор и потери напора (линейные и местные). Скоростной напор:
или .
Потери напора:
или
Таким образом, уравнение Бернулли можно записать в следующем виде:
Полученное уравнение необходимо решить относительно искомой величины - длины сливной трубы L. Прежде всего обе части уравнения поделим на и перенесём в одну часть уравнения члены, содержащие неизвестную величину, а не содержащие - в другую.
L· .
Приведем слагаемые в левой части уравнения к общему знаменателю и умножив на него обе части уравнения, вынесем в левой части общий множитель за скобки:
,
откуда
L = =
= =
=
43. Определить силу F, которую нужно приложить к поршню насоса диаметром D=65мм, чтобы подавать в напорный бак жидкость с постоянным расходом Q=2,5л/с. Высота подъема жидкости в установке =10м, избыточное давление в напорном баке =0,15МПа. Размеры трубопровода Ɩ=60м, d=30мм; его шероховатость △=0,03мм. Коэффициент сопротивления вентиля на трубопроводе ζ=5,5, потери напора на плавных поворотах трубопровода не учитывать. Задачу решить для случая подачи в бак бензина ( =765кг/м3, v=0,4сСт) и машинного масла ( =930кг/м3, v=20сСт). Трением поршня в цилиндре пренебречь.
Решение: При равномерном движении поршня сила F, приложенная к поршню слева, должна быть равна силе давления жидкости справа т. е.
F = p · · .
Чтобы определить давление р справа от поршня нужно записать уравнение Бернулли для сечений: 1-1 - сразу за поршнем справа, 2-2 свободная поверхность жидкости в напорном баке; плоскость сравнения - осевая линия насоса. Это же уравнение можно записать, понимая энергетический смысл процесса. При подаче в бак жидкости с расходом Q, энергия жидкости, сообщаемая ей насосом в виде давления р, расходуется на высоту (в размерности давления эта величина равна · g · ), на преодоление противодавления и на преодоление сопротивлений в трубопроводе. Таким образом, уравнение Бернулли в размерности давления запишем следующим образом:
р = · g · + .
Чтобы определить потери давления необходимо установить режим течения жидкости в трубопроводе с помощью критерия Рейнольдса:
.
1. для бензина:
= 265393.
2. для масла:
.
Вычисленные по уравнению числа Рейнольдса значительно больше критического . Следовательно, режим течения бензина и масла турбулентный и для определения потерь в трубопроводе используем формулу Вейсбаха-Дарси, причем скорость выражаем через расход и сечение трубопровода:
.
1. Неизвестный коэффициент гидравлического трения для бензина определим по формуле Шифринсона (область гидравлически шероховатых труб на графике Никурадзе):
= 0,11· .
Потери давления при течении по трубопроводу бензина:
Давление перед поршнем насоса:
р = 765·9,81·10+150000+217912=442958Па=443кПа.
Сила, приложенная к поршню насоса:
F = 443 · · .
2. Для масла коэффициент λ определяем по формуле Блазиуса, так как число Рейнольдса меньше (область гидравлчески гладких труб на графике Никурадзе):
λ = .
Потери давления:
Δр =
Давление, создаваемое насосом:
р = 930 · 9,81 · 10 + 150000 + 462869 = 704102Па = 704кПа.
Сила, приложенная к поршню:
F = 704102 · = 2335Н = 2,34кН.
44. Смазочное масло подводится к подшипникам коленчатого вала по системе трубок, состоящей из пяти одинаковых участков, каждый длиной Ɩ=500мм. Сколько смазки нужно подать к узлу А системы, чтобы каждый подшипник получил ее не менее 8 /с? Как изменится потребное количество смазки, если участок АВ заменить трубой диаметром D=8мм? Давление на выходе из трубок в подшипники считать одинаковыми, местными потерями и скоростными напорами пренебречь.
Решение: Так как давление на выходе из трубок в подшипники одинаково, то данный разветвленный трубопровод можно считать, как при параллельном соединении труб, т. е. расходы по участкам складываются а потери напора на участках одинаковы, т. е
Q = ; .
Условимся нумеровать подшипники слева направо и длины участков будем считать от узловой т. А до соответствующего подшипника, т.е. для первого подшипника она будет равна 3Ɩ, для второго 2Ɩ, и для третьего – lƖ. Прежде чем определять потери напора на участках, необходимо установить режим течения масла в трубках с помощью критерия Рейнольдса
.
Вычисленное по уравнению число Рейнольдса меньше критического, следовательно, режим течения ламинарный и для определения потерь напора используем формулу Пуазейля. На первом участке на длине l расход масла будет равен сумме расходов первого и второго подшипников и на длине 2l расход равен расходу первого подшипника и потери напора, таким образом, можно записать следующим образом:
.
Для второго участка на длине l расход равен сумме расходов первого и второго подшипников и на длине Ɩ - расходу второго подшипника т. е.
.
Для третьего участка:
.
Приравнивая последовательно правые части полученных выражений, выразим расходы на втором и третьем участках через расход на первом участке, сократив при этом общие множители.
Итак:
или
или .
или ,
или = 5 .
Подставим значения расходов в исходное уравнение, получим
Q = =8 + 2 · 8 + 5 · 8 = 64 см3/с.
Если диаметр магистрального участка трубопровода увеличен в два раза, то уравнения для определения потерь напора на участках запишутся следующим образом:
h1 = · ;
h2 = · ; h1 = · Q3.
Используя те же приемы, что и в первом случае запишем, что
и
+ 17/16 .
Подставив полученные выражения для и получим:
Q =
см3/с.
Дата добавления: 2015-10-29; просмотров: 293 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Агроинженерия 3 страница | | | Агроинженерия 5 страница |