Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Прямоугольные проекции

Читайте также:
  1. Декартовы прямоугольные координаты в пространстве. Расстояние между двумя точками. Деление отрезка в данном отношении.
  2. КОСОУГОЛЬНЫЕ ПРОЕКЦИИ
  3. Проекции и точки аускультации клапанов сердца.
  4. Прямоугольные фигуры и формы
  5. Тема 1. МЕТОД ПРОЕКЦИЙ. ПРОЕКЦИИ ТОЧКИ

Прямоугольная изометрическая проекция (рисунок 119). В прямоугольной изометрической проекции аксонометрические оси ОX, ОY и ОZ расположены под углом 120o друг к другу, или, что удобно для вычерчивания, составляют угол 30o с горизонтальной линией.

 

 

Рисунок 119

 

В прямоугольной аксонометрии сумма квадратов коэффициентов искажения равна двум, то есть K2x = K2y = K2z = 2.

Поэтому Kx = Ky = Kz = 0,82.

Так как эти значения неудобны для подсчета размеров при построении, то стандарт рекомендует выполнять изометрическую проекцию без искажения по осям, что соответствует замене действительных коэффициентов искажения более удобными приведенными коэффициентами, равными единице: Kx = Ky = Kz = 1. При этом изображение получается увеличенным в 1,22 раза.

Коэффициент искажения по осям OX, OY, OZ равен 0,82.

Изометрическую проекцию для упрощения, как правило, выполняют без искажения по осям OX, OY, OZ, т. е. приняв коэффициент искажения равным 1.

Окружности, лежащие в плоскостях, параллельных плоскостям проекций проецируются на аксонометрическую плоскость проекций в эллипсы (рисунок 119).

Если изометрическую проекцию выполняют без искажения по осям OX, OY, OZ, то большая ось эллипсов 1, 2, 3 равна 1,22. а малая ось — 0,71 диаметра окружности.

Если изометрическую проекцию выполняют с искажением по осям OX, OY, OZ, то большая ось эллипсов (Б.О.) 1, 2, 3 равна диаметру окружности, а малая ось (М.О.) — 0,58 диаметра окружности.

Прямоугольную изометрию применяют, когда все три видимые на аксонометрическом изображении стороны предмета имеют примерно одинаковое количество особенностей, необходимых для характеристики изображаемого предмета.

Прямоугольная диметрическая проекция (рисунок 120). В прямоугольной диметрической проекции аксонометрические оси ОX и ОZ составляют между собой угол 97o10'. Ось ОY является биссектрисой оставшегося угла, составляя с двумя другими осями равные углы 131o25' (рисунок 11). При построении этой проекции принимают, что Kx = Kz = 0,94 и Ky = 0,5Kx. =0,47.

Приведенные коэффициенты искажения будут равны: Kx = Kz = 1; Ky = 0,5, что соответствует увеличению изображения в 1,06 раза.

Окружности, лежащие и плоскостях, параллельных плоскостях проекций, проецируются на аксонометрическую плоскость проекций в эллипсы.

Если диметрическую проекцию выполняют без искажения по осям OX и OZ то большая ось эллипсов 1, 2, 3 равна 1,06 диаметра окружности, а малая ось эллипса 1 - 0,95, эллипсов 2 и 30,35 диаметра окружности.

Если диметрическую проекцию выполняют с искажением по осям OX и OZ, то большая ось эллипсов 1, 2, 3 равна диаметру окружности, а малая ось эллипса 10,9, эллипсов 2 и 30,33 диаметра окружности.

 

 

Рисунок 120

1 - эллипс (большая ось расположена под углом 90° к оси OY);

2 - эллипс (большая ось расположена под углом 90° к оси OZ);

3 - эллипс (большая ось расположена под углом 90° к оси OX)

 

Прямоугольная диметрия рекомендуется к применению в случае, когда наибольшее число характерных особенностей сосредоточено на одной стороне предмета. Наиболее отличающаяся особенностями сторона предмета располагается параллельно плоскости XOZ


Дата добавления: 2015-10-28; просмотров: 110 | Нарушение авторских прав


Читайте в этой же книге: ШРИФТЫ ЧЕРТЕЖНЫЕ | Порядок заполнения основной надписи | Деление отрезка прямой на пропорциональные части | Деление окружности на равные части и построение правильных вписанных многоугольников | Построение правильных многоугольников по данной стороне | Сопряжение двух прямых дугой окружности | Архитектурные обломы | Коробовые кривые | Способы построения некоторых лекальных кривых | ПРАВИЛА И РЕКОМЕНДАЦИИ ПРИ ПРОСТАНОВКЕ РАЗМЕРОВ |
<== предыдущая страница | следующая страница ==>
ОБЩИЕ ПОЛОЖЕНИЯ| КОСОУГОЛЬНЫЕ ПРОЕКЦИИ

mybiblioteka.su - 2015-2024 год. (0.013 сек.)