Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Тема 8. Выборочное наблюдение

Читайте также:
  1. Глава IV. Наблюдение
  2. Диспансерное наблюдение за ВИЧ-инфицированными и подозрительными на заражение ВИЧ-лицами. (для инфекционистов, терапевтов, педиатров, акушер-гинекологов)
  3. Задание 2. Наблюдение и оценка сложно-координированных движений
  4. Замечание [Наблюдение] II: Вычисление Новых Контрольных Точек
  5. Метод тестов. Анкетный метод Биографический метод. Метод анализа продуктов деятельности человека. Метод беседы. Эксперимент. Наблюдение.
  6. Наблюдение за прогрессом и преодоление трудностей
  7. Наблюдение за состоянием рынка

Проработку темы следует начать с выяснения сущности и задач используемых на практике форм несплошного наблюдения. Необходимо затем уяснить природу ошибки выборочного наблюдения (ошибки репрезентативности) и усвоить, что репрезентативность несплошного наблюдения может быть обеспечена лишь при правильной организации отбора подлежащих обследованию единиц. Важно четко представить себе особенности и преимущества выборочного наблюдения по сравнению с другими разновидностями несплошного наблюдения, уяснить смысл понятия «случайный отбор» и значение принципа случайного отбора для обеспечения репрезентативности результатов наблюдения.

Студент должен ознакомиться также с различными формами организации выборочного наблюдения. Выборочное наблюдение опирается на закон больших чисел и относящиеся к этому закону теоремы, которые используются при оценке результатов выборки. Необходимо познакомиться с использованием этого материала и усвоить формулы для расчета средних и предельных ошибок доли исредней величины признака (при различных формах организации выборки) и определения числа единиц выборочной совокупности, необходимой для обеспечения заданной точности результата. Формулы необходимо усвоить практически, путем решения приведенных в учебниках и учебных пособиях задач.

При решении задач следует использовать общепринятые условные обозначения, которые приведены ниже.

Показатели Обозначения в совокупностях
генеральной выборочной
Число единиц N n
Средняя величина
Число единиц, обладающих изучаемым признаком M m
Доля единиц, обладающих изучаемым признаком
Доля единиц, не обладающих изучаемым признаком
Дисперсия
Средняя ошибка ,
Предельная ошибка ,

Различие (отклонение) между генеральной средней и выборочной средней, между генеральной долей единиц, обладающих изучаемым признаком, и соответствующим выборочным показателем называется ошибкой выборки, которая зависит от колеблемости признака в совокупности и численности единиц выборки.

При изучении среднего значения признака средняя ошибка вычисляется по формулам:

для повторного отбора

, (8.1)

для бесповторного

. (8.2)

Предельная ошибка отличается введением в эти формулы коэффициента доверия (Стъюдента), который зависит от гарантируемой вероятности точности результатов:

(8.3)

При определении доли единиц, обладающих изучаемым признаком, аналогичные формулы записываются следующим образом:

для повторного отбора

, (8.4)

для бесповторного отбора

. (8.5)

Предельные ошибки вычисляются с введением коэффициента доверия

. (8.6)

Подсчитав отклонения выборочных показателей от генеральных и все характеристики выборочной совокупности, можно подсчи­тать генеральные показатели:

, (8.7)

. (8.8)

Если допустимая ошибка выборки или задана, то можно подсчитать, какое число единиц выборочной совокупности необходимо подвергнуть наблюдению, чтобы не превысить заданную величину ошибки. Для этого определяют n из формул (8.3) или (8.6).


Дата добавления: 2015-10-26; просмотров: 70 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Тема 7. Индексы| Тема 9. Методы статистического изучения взаимосвязи

mybiblioteka.su - 2015-2024 год. (0.006 сек.)