Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Анализ статической неопределимости системы

Читайте также:
  1. Case-study (анализ конкретных ситуаций, ситуационный анализ)
  2. II. Среди немыслимых побед цивилизации мы одиноки,как карась в канализации
  3. III. Избирательные системы.
  4. IV. Анализ рынка
  5. JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL (ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ)
  6. SWOT-анализ
  7. SWOT-анализ

Неизвестные величины: , , , .

4 неизвестных – 3 уравнения статики = 1 раз статич. неопределимая конструкция

1-Определение усилий от внешних сил и

Вычертим расчетную схему балки с указанием всех размеров. Для расчета усилий используем метод сечений. Сечения проведем через оба стержня. рассмотрим равновесие нижней части системы, заменяя действие отбрасываемой верхней части стержней внутренними усилиями реакций N1 и N2.(Рис. 2).

Составим уравнение статики:

(1)

Степень статической неопределенности системы к=1, так как имеем два неизвестных усилия и одно уравнение равновесия статики.

Для составления одного недостающего уравнения, так называемого, уравнения совместности деформаций, необходимо рассмотреть схему перемещений системы (Рис. 3).

Под действием внешних сил P1 и P2 первый стержень удлинится на величину , а второй на величину , при этом жёсткая балка AD повернется в положение AD1.

Ввиду малости упругих деформаций горизонтальными смешениями точек В и С, лежащих на оси балки, пренебрегаем, и будем считать, что точки В и С в ходе деформирования системы переместятся строго вертикально и займут положение В1 и С1.

Отрезки и определяют удлинения стержней –соответственно и

Условно совместности деформаций в данном случае проще всего составить, воспользовавшись подобием треугольника и :

(2)

(3)

(4)

по закону Гука:

тогда

т. к.

(5)

Из (5) рассчитаем N1:

Из (1)

 

 

2-Определение монтажных напряжений вызванных неточностью изготовления стержня, ()

.

 

Уравнение равновесия для этого случая примет вид:

(6)

тогда

(7)

(8)

по закону Гука:

 

 

(9)

(10)

(11)


Дата добавления: 2015-07-08; просмотров: 193 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Кафедра механики| Введение

mybiblioteka.su - 2015-2024 год. (0.016 сек.)