Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Непрерывность функции в точке.

Читайте также:
  1. II. Основные задачи и функции
  2. II. Признаки, ресурсы и функции власти.
  3. II. Функции
  4. II.Синдром дисфункции синусового узла (СССУ) I 49.5
  5. III. Объективные признаки дисфункции сердца
  6. III. Органы, объединяющие эндокринные и неэндокринные функции
  7. III. Функции политологии. Возрастание роли политических знаний в жизни общества.

 

Определение. Функция f(x), определенная в окрестности некоторой точки х0, называется непрерывной в точке х0, если предел функции и ее значение в этой точке равны, т.е.

Определение. Если функция f(x) определена в некоторой окрестности точки х0, но не является непрерывной в самой точке х0, то она называется разрывной функцией, а точка х0 – точкой разрыва.

 

Пример непрерывной функции:

 

f(x0)+e f(x0) f(x0)-e x0-D x0 x0+D

 

 

Пример разрывной функции:

 

f(x0)+e f(x0) f(x0)-e

 

Определение. Функция f(x) называется непрерывной в точке х0, если для любого положительного числа e>0 существует такое число D>0, что для любых х, удовлетворяющих условию верно неравенство

 

Определение. Функция f(x) называется непрерывной в точке х = х0, если приращение функции в точке х0 является бесконечно малой величиной.

f(x) = f(x0) + a(x),где a(х) – бесконечно малая при х®х0.

 

Свойства непрерывных функций.

1) Сумма, разность и произведение непрерывных в точке х0 функций – есть функция, непрерывная в точке х0.

2) Частное двух непрерывных функций – есть непрерывная функция при условии, что g(x) не равна нулю в точке х0.

3) Суперпозиция непрерывных функций – есть непрерывная функция.

 

Это свойство может быть записано следующим образом:

 

Если u = f(x), v = g(x) – непрерывные функции в точке х = х0, то функция v = g(f(x)) – тоже непрерывная функция в этой точке.


Дата добавления: 2015-07-10; просмотров: 114 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Операционная маржа| Точки разрыва функции

mybiblioteka.su - 2015-2024 год. (0.011 сек.)