Читайте также:
|
|
Понятие непрерывности функции в точке
Основные понятия и определения
Функция называется непрерывной в точке , если:
1. функция определена в точке и ее окрестности;
2. существует конечный предел функции в точке ;
3. это предел равен значению функции в точке , т.е.
При нахождении предела функции , которая является непрерывной, можно переходить к пределу под знаком функции, то есть
Задание. Вычислить предел
Решение.
Ответ.
Приращение аргумента и функции
Рассмотрим функцию , которая определена в некотором интервале и рассмотрим произвольную точку из этого интервала: .
Приращением аргумента в точке называется разность
Замечание. Из последнего равенства легко увидеть, что .
Приращением функции в точке называется разность соответствующих значений функции или, используя равенство из выше приведенного замечания, будем иметь:
Функция непрерывна в точке тогда и только тогда, когда бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции :
Задание. Исследовать на непрерывность функцию
Решение. Функция определена в любой точке из . Найдем приращение заданной функции произвольной точке :
Тогда
А тогда делаем вывод, что функция является непрерывной.
Ответ. Функция является непрерывной.
Дата добавления: 2015-07-10; просмотров: 119 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Альфонс де Вэленс | | | Непрерывность функции на промежутке |