Читайте также:
|
|
Произведение чисел имеющих на конце 1 или 9 дают число с 1 в конце. Например, 21 на 21 равно 441.
Произведение чисел имеющих на конце 2 или 8 дают число с 4 в конце. Например, 18 на 18 равно 324.
Произведение чисел имеющих на конце 5 дают число с 5 в конце. Например, 25 на 25 равно 625.
Произведение чисел имеющих на конце 4 или 6 дают число с 6 в конце. Например 26 на 26 равно 676.
Произведение чисел имеющих на конце 3 или 7 дают число с 9 в конце. Например, 17 на 17 равно 289.
Так как число 190969 на конце имеет 9, то это произведение либо числа 433, либо 437. Только они при возведении в квадрат могут дать 9 на конце.
Проверяем:
Результат корня равен 437.
То есть, мы как бы «нащупали» ответ.
Как видите, максимум, что потребуется, это произвести 5 действий столбиком. Возможно, вы сразу попадёте в точку, или сделаете три действия. Всё зависит о того, как точно вы сделаете оценку.
3 способ.
Правило. Чтобы, извлечь квадратный корень из данною целого числа, разбивают его, от правой руки к левой, на грани, по 2 цифры в каждой, кроме последней, в которой может быть и одна цифра.
Чтобы найти первую цифру корня, извлекают квадратный корень из первой грани.
Чтобы найти вторую цифру, из первой грани вычитают квадрат первой цифры корня, к остатку сносят вторую грань и число десятков получившегося числа делят на удвоенную первую цифру корня; полученное целое число подвергают испытанию.
Испытание это производится так: за вертикальной чертой (налево от остатка) пишут удвоенное ранее найденное число корня и к нему, с правой стороны, приписывают испытуемую цифру, получившееся, после этой приписки число умножают на испытуемую цифру. Если после умножения получится число, большее остатка, то испытуемая цифра не годится и надо испытать следующую меньшую цифру.
Следующие, цифры корня находятся по тому же приему.
Если после снесения грани число десятков получившегося числа окажется меньше делителя, т. е. меньше удвоенной найденной части корня, то в корне ставят 0, сносят следующую грань и продолжают действие дальше.
Например:
Извлечение корня из числа, меньшего 10000, но большего 100. Пусть надо найти √4082. Так как это число меньше 10 000, то корень из него меньше √l0 000 = 100. С другой стороны, данное число больше 100; значит, корень из него больше (или равен 10). (Если бы, напр., требовалось найти √120, то хотя число 120 > 100, однако √120 равен 10, т.к. 112= 121.) Но всякое число, которое больше 10, но меньше 100, имеет 2 цифры; значит, искомый корень есть сумма:
десятки + единицы,
и поэтому квадрат его должен равняться сумме:
(дес.)2 + 2 •(дес.) • (ед.) + (ед.)2.
Сумма эта должна быть наибольшим квадратом, заключающимся в 4082.
Так как (десятки)2 составляют сотни, то квадрат десятков надо искать в сотнях данного числа. Сотен в данном числе 40 (мы находим их число, отделив запятой две цифры справа). Но в 40 заключается несколько целых квадратов: 36,25,16,.. и др. |
Возьмем из них наибольший, 36, и допустим,что квадрат десятков корня будет равен именно этому наибольшему квадрату. Тогда число десятков в корне должно быть 6. Проверим теперь, что это всегда должно быть так, т. е. всегда число десятков корня равно наибольшему целому корню из числа сотен подкоренного числа.
Действительно, в нашем примере число десятков корня не может быть больше 6, так как (7 дес.)2 = 49 сотен, что превосходит 4082. Но оно не может быть и меньше 6, так как 5 дес. (с единицами) меньше 6 дес, а между тем (6 дес.)2 = 36 сотен, что меньше 4082. А так как мы ищем наибольший целый корень, то мы не должны брать для корня 5 дес, когда и 6 десятков оказывается не много.
Итак, мы нашли число десятков корня, именно 6. Пишем эту цифру направо от знака =, запомнив, что она означает десятки корня. Возвысив ее в квадрат, получим 36 сотен. Вычитаем эти 36 сотен из 40 сотен подкоренного числа и сносим две остальные цифры данного числа. В остатке 482 должны содержаться 2 • (6 дес.) • (ед.) + (ед.)2. Произведение (6 дес.) • (ед.) должно составлять десятки; поэтому удвоенное произведение десятков на единицы надо искать в десятках остатка, т. е. в 48 (мы получим число их, отделив в остатке 48'2 одну цифру справа). Удвоенные десятки корня составляют 12. Значит, если 12 умножим на единицы корня (которые пока неизвестны), то мы должны получить число, содержащееся в 48. Поэтому мы разделим 48 на 12.
Для этого налево от остатка проводим вертикальную черту и за нею (отступив от черты на одно место влево для цели, которая сейчас обнаружится) напишем удвоенную первую цифру корня, т. е. 12, и на нее разделим 48. В частном получим 4.
Однако, заранее нельзя ручаться, что цифру 4 можно принять за единицы корня, так как мы сейчас разделили на 12 все число десятков остатка, тогда как некоторая часть из них может и не принадлежать удвоенному произведению десятков на единицы, а входит в состав квадрата единиц. Поэтому цифра 4 может оказаться велика. Надо ее испытать. Она, очевидно, годится в том случае, если сумма 2 • (6 дес.) • 4 + 42 окажется не больше остатка 482.
Сумму это мы можем вычислить сразу таким простым приемом: за вертикальной чертой к удвоенной цифре корня (к 12) приписываем справа цифру 4 (поэтому-то мы и отступили от черты на одно место) и на нее же умножим полученное число (124 на 4).Действительно, производя это умножение, мы умножаем 4 на 4, значит, находим квадрат единиц корня; затем мы умножаем 12 десятков на 4, значит находим удвоенное произведение десятков корня на единицы. |
В результате получаем сразу сумму того и другого. Полученное произведение оказалось 496, что больше остатка 482; значит, цифра 4 велика. Тогда испытаем таким же образом следующую меньшую цифру 3.
Для этого сотрем цифру 4 и произведение 496 и вместо цифры 4 поставим 3 и умножим 123 на 3. Произведение 369 оказалось меньше остатка 492; значит, цифра 3 годится (если бы случилось, что и эта цифра велика, тогда надо было бы испытать следующую меньшую цифру 2). Пишем цифру 3 в корне направо от цифры десятков.Последний остаток 113 показывает избыток данного числа над наибольшим целым квадратом, заключающимся в нем. |
Для поверки мы возвысили в квадрат 63 и к результату приложили 113; так как в сумме получилось данное число 4082, то действие сделано верно. |
Примеры.
В примере 4-м при делении 47 десятков остатка на 4, мы получаем в частном 11. Но так как цифра единиц корня не может быть двузначным числом 11 или 10, то надо прямо испытать цифру 9.
В примере 5-м после вычитания из первой грани квадрата 8 остаток оказывается 0, и следующая грань тоже состоит из нулей. Это показывает, что искомый корень состоит только из 8 десятков, и потому на место единиц надо поставить нуль.
172. Извлечение корня из числа, большего 10000. Пусть требуется найти √35782. Так как подкоренное число превосходит 10 000, то корень из него больше √10000 = 100 и, следовательно, он состоит из 3 цифр или более. Из скольких бы цифр он ни состоял, мы можем его всегда рассматривать как сумму только десятков и единиц. Если, напр., корень оказался бы 482, то мы можем его считать за сумму 48 дес. + 2 ед. Тогда квадрат корня будет состоять из 3 слагаемых:
(дес.)2 + 2 • (дес.) (ед.) + (ед.)2.
Теперь мы можем рассуждать совершенно так же, как и при нахождении √4082 (в предыдущем параграфе). Разница будет только та, что для нахождения десятков корня из 4082 мы должны были извлечь корень из 40, и это можно было сделать по таблице умножения; теперь же для получения десятков√35782 нам придется извлечь корень из 357, что по таблице умножения нельзя выполнить. Но мы можем найти√357 тем приемом, который был описан в предыдущем параграфе, так как число 357 < 10 000. Наибольший целый корень из 357 оказывается 18. Значит, в √3'57'82 должно быть 18 десятков. Чтобы найти единицы, надо из 3'57'82 вычесть квадрат 18 десятков, для чего достаточно вычесть квадрат 18 из 357 сотен и к остатку снести 2 последние цифры подкоренного числа. Остаток от вычитания квадpaта 18 из 357 у нас уже есть: это 33. Значит, для получения остатка от вычитания квадрата 18 дес. из 3'57'82, достаточно к 33 приписать справа цифры 82.
Далее поступаем так, как мы поступали при нахождении √4082, a именно: налево от остатка 3382 проводим вертикальную черту и за нею пишем (отступив от черты на одно место) удвоенное число найденных десятков корня, т. е. 36 (дважды 18). В остатке отделяем одну цифру справа и делим число десятков остатка, т. е. 338, на 36. В частном получаем 9. Эту цифру испытываем, для чего ее приписываем к 36 справа и на нее же умножаем. Произведение оказалось 3321, что меньше остатка. Значит, цифра 9 годится, пишем ее в корне.
Вообще, чтобы извлечь квадратный корень из какого угодно целого числа, надо сначала извлечь корень из числа его сотен; если это число более 100, то придется искать корень из числа сотен этих сотен, т. е. из десятков тысяч данного числа; если и это число более 100, придется извлекать корень из числа сотен десятков тысяч, т. е. из миллионов данного числа, и т. д.
Примеры.
В последнем примере, найдя первую цифру и вычтя квадрат ее, получаем в остатке 0. Сносим следующие 2 цифры 51. Отделив десятки, мы получаем 5 дес, тогда как удвоенная найденная цифра корня есть 6. Значит, от деления 5 на 6 мы получаем 0. Ставим в корне 0 на втором месте и к остатку сносим следующие 2 цифры; получаем 5110. Далее продолжаем как обыкновенно.
В этом примере искомый корень состоит только из 9 сотен, и потому на месте десятков и на месте единиц надо поставить нули.
Дата добавления: 2015-07-10; просмотров: 186 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Как установить обновления с диска ИТС | | | Демонстрация сопровождения в приятном воспоминании. |