Читайте также:
|
|
Теорема 2. Предел произведения двух, трех и вообще конечного числа функций равен произведению пределов этих функций:
.
Доказательство. Пусть . Следовательно, f(x)=b+α(x) и g(x)=c+β(x) и
fg = (b + α)(c + β) = bc + (bβ + cα + αβ).
Произведение bc есть величина постоянная. Функция bβ + c α + αβ на основании свойств бесконечно малых функций есть величина бесконечно малая. Поэтому .
Следствие 1. Постоянный множитель можно выносить за знак предела:
.
Следствие 2. Предел степени равен степени предела:
.
Пример. .
Теорема 3. Предел частного двух функций равен частному пределов этих функций, если предел знаменателя отличен от нуля, т.е.
.
Доказательство. Пусть . Следовательно, f(x)=b+α(x) и g(x)=c+β(x), где α, β – бесконечно малые. Рассмотрим частное
.
Дробь является бесконечно малой функцией, так как числитель есть бесконечно малая функция, а знаменатель имеет предел c2≠0.
Дата добавления: 2015-07-10; просмотров: 93 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Арифметические операции | | | Одобрен Советом Федерации 24 сентября 2003 года 1 страница |