Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Прямой и плоскости общего положения

Положение точки относительно плоскостей проекций | Взаимное положение точек в пространстве | Выводы по теме | Задания для самостоятельного решения | Алгоритм построения проекций отрезка прямой линии | Взаимное положение прямых линий | Задания для самостоятельного решения | Геометрические построения в задаче 2 б | Задание плоскости на комплексном чертеже | Положение плоскости относительно плоскостей проекций |


Читайте также:
  1. I. ИЗХОДНЫЕ ПОЛОЖЕНИЯ
  2. I. ИЗХОДНЫЕ[1] ПОЛОЖЕНИЯ
  3. I. ОБЩИЕ ПОЛОЖЕНИЯ
  4. I. ОБЩИЕ ПОЛОЖЕНИЯ
  5. I. ОБЩИЕ ПОЛОЖЕНИЯ
  6. I. Основные богословские положения
  7. I. Основные положения

 

Словесная форма Графическая форма
1. Заключить прямую b в вспомогательную плоскость-посредник P, [b2]=[P2]
2. Построить линию пересечения вспомогательной плоскости с заданной, Σ(ΔABC)ÇP2= 1;2. [Р2]Ç [В2С2]=[22]; [Р2]Ç [А2С2]=12; [12]Ç [А1С1]; [22]Ì[В1С1]
3. Найти точку пересечения полученной линии пересечения с заданной прямой, bÇΣ(ΔABC)=K. [11;21]Ç[b1]=[К1]; [К2]Ì[11;21]. 4. Определить видимость заданной прямой по правилу конкурирующих точек[15]  

Решение частных случаев задачи на определение точки пересечения прямой с плоскостью основано на свойствах проекций геометрических образов частного положения.

Задача 5.2. Построение точки пересечения прямой общего положения с проецирующей плоскостью (рис. 5.20).

Алгоритм построения.

1. Опустить перпендикуляр линии связи из точки М2 до пересечения с а1. Получим точку М1.

2. Показать видимость прямой а: полупрямая, находящаяся выше плоскости P (Р2), будет видимой на горизонтальной плоскости проекций до точки М пересечения с плоскостью.

Задача 5.3. Построение точки пересечения проецирующей прямой с плоскостью общего положения(рис. 5.21).

Алгоритм построения.

1. Через точку m1 провести фронталь f1 плоскости точки P(ΔABC), m1=E1, E1Р(ΔABC). Точка Е1 – горизонтальная проекция искомой точки пересечения прямой m с плоскостью P(ΔABC).

2. Построить f2, Е2Ì f2,f2∩m22. Точка Е2 – фронтальная проекция искомой точки пересечения прямой m с плоскостью P(ΔABC).

3. Показать видимость прямой m относительно точки Е по конкурирующим точкам.

Прямая линия, перпендикулярная плос­кости. Согласно элементарной геометрии, прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости. На заданной плоскости в качестве двух пересекающихся прямых целесообразно выбирать линии уровня – фронтали, горизонтали. В этом случае основанием решения будут являться свойства проецирования прямого угла.

Таким образом, признак перпендикулярности прямой и плоскости можно сформулировать так: прямая перпендикулярна плоскости, если ее горизонтальная проекция перпендикулярна к горизонтальной проекции горизонтали плоскости, а фронтальная проекция прямой перпендикулярна к фронтальной проекции фронтали плоскости.

Алгоритм построения перпендикуляра
к плоскости(рис. 5.22).

1. Построить фронталь и горизонталь плоскости: h(h1; h2),f(f1; f2).

2. Из точки D1 провести перпендикуляр к горизонтальной проекции горизонтали, D1K1 h1. Из точки D2 провести перпендикуляр к фронтальной проекции фронтали, D2K2 ^ f2.

3. Вывод: К^Q(ΔABC)Þ[D2K2]^[A2B2C2]; [C1D1]^[A1B1C1].

Прямая линия, параллельная плоскости. Прямая параллельна плоскости, если она параллельна одной из прямых, лежащих в этой плоскости и не принадлежит этой плоскости. В общем случае, для решения задач на построение прямой, параллельно плоскости можно следовать этапам алгоритма, приведенным в табл. 5.2.

Таблица 5.2


Дата добавления: 2015-11-03; просмотров: 51 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Прямая линия, принадлежащая плоскости| Общего положения способом 2

mybiblioteka.su - 2015-2024 год. (0.007 сек.)