Взаимное положение прямых линий
Обозначения, принятые в пособии | Виды проецирования | Основные свойства проекций | Построение чертежа по схеме Монжа | Построение комплексного чертежа точки | Положение точки относительно плоскостей проекций | Взаимное положение точек в пространстве | Выводы по теме | Задания для самостоятельного решения | Геометрические построения в задаче 2 б |
Две прямые в пространстве могут быть параллельными, пересекаться и скрещиваться.
Параллельные прямые. Если прямые параллельны, то их одноименные проекции параллельны[12] (рис. 4.10). Если ABIICD, то [A1B1]II[C1D1]; [A2B2]II[C2D2]; [A3B3]II[C3D3] (рис. 4.10). В свою очередь, если проекции прямых линий на всех плоскостях проекций параллельны, то прямые линии параллельны.
Особый случай представляют собой прямые линии, параллельные одной из плоскостей проекций. Например, фронтальные и горизонтальные проекции профильных прямых линий параллельны, но для оценки их взаимного положения необходимо построить профильные проекции прямых, которые
в рассмотренном случае на плоскости П3 пересекаются, следовательно, AB
и CD не параллельны [A1B1]II[C1D1]; [A2B2]II[C2D2]; [A3B3]∩[C3D3] (рис. 4.11).
|
| |
Рис. 4.10. Прямые линии, параллельные: а – наглядное изображение; б – комплексный чертёж
| |
|
|
|
|
Рис. 4.11. Прямые линии, непараллельные: а – наглядное изображение; б – комплексный чертёж
|
Пересекающиеся прямые. Если прямые пересекаются, то их проекции также пересекаются, а точки пересечения проекций находятся в проекционной связи[13] (рис. 4.12). Рассмотрим два частных случая.
1. Если одна из прямых параллельна какой-либо плоскости проекций, например, профильной, то по двум проекциям невозможно судить об их взаимном расположении (рис. 4.13).
2. Пересекающиеся прямые расположены в общей для них проецирующей плоскости, например перпендикулярной фронтальной плоскости проекций. О взаимном расположении прямых, лежащих в этой плоскости, можно судить по одной горизонтальной проекции [А1В1]∩[С1D1]Þ АВ∩СD (рис. 4.14).
|
| |
Рис. 4.12. Прямые линии пересекающиеся: а – наглядное изображение; б – комплексный чертёж
| |
|
|
Рис. 4.13. Прямые линии не пересекаются
| Рис. 4.14. Прямые линии пресекаются
|
| | | |
Скрещивающиеся прямые. Если одна из двух прямых линий лежит в некоторой плоскости, а другая прямая линия пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые – скрещивающиеся (рис. 4.15).