Читайте также: |
|
Многофункциональные статистические критерии – это критерии, которые могут использоваться по отношению к самым разнообразным данным, выборкам и задачам.
Это означает, что данные могут быть представлены в любой шкале, начиная от номинативной (шкалы наименований).
Это означает также, что выборки могут быть как независимыми, так и связанными, то есть мы можем с помощью многофункциональных критериев сравнивать и разные выборки испытуемых, и показатели одной и той же выборки, измеренные в разных условиях. Нижние границы выборок – 5 наблюдений, но возможно применение критериев и по отношению к выборкам с , с некоторыми ограничениями.
Верхняя граница выборок задана только в биномиальном критерии – 50 человек. В критерии Фишера верхней границы не существует – выборки могут быть сколь угодно большими.
Многофункциональные критерии позволяют решать задачи сопоставления уровней исследуемого признака, сдвигов в значениях исследуемого признака и сравнения распределений.
К числу многофункциональных критериев в полной мере относится критерий Фишера (угловое преобразование Фишера) и, с некоторыми оговорками – биномиальный критерий m.
Многофункциональные критерии построены на сопоставлении долей, выраженных в долях единицы или в процентах. Суть критериев состоит в определении того, какая доля наблюдений (реакций, выборов, испытуемых) в дайной выборке характеризуется интересующим исследователя эффектом и какая доля этим эффектом не характеризуется.
Таким эффектом может быть:
а) определенное значение качественно определяемого признака – например, выражение согласия с каким-либо предложением; выбор правой дорожки из двух симметричных дорожек; отнесенность к определенному полу; присутствие фигуры отца в раннем воспоминании и др.;
б) определенный уровень количественно измеряемого признака, например, получение оценки, превосходящей проходной балл; решение задачи менее чем за 20 сек; факт работы в команде, по численности превышающей 4-х человек; выбор дистанции в разговоре, превышающей 50 см, и др.;
в) определенное соотношение значений или уровней исследуемого признака, например, более частый выбор альтернатив А и Б по сравнению с альтернативами В и Г; преимущественное проявление крайних значений признака, как самых высоких, так и самых низких; преобладание положительных сдвигов над отрицательными и др.
Итак, путем сведения любых данных к альтернативной шкале «Есть эффект – нет эффекта» многофункциональные критерии позволяют решать все три задачи сопоставлений – сравнения «уровней», оценки «сдвигов» и сравнения распределений.
Критерий применяется в тех случаях, когда обследованы две выборки испытуемых, биномиальный критерий m – в тех случаях, когда обследована лишь одна выборка испытуемых.
Дата добавления: 2015-10-24; просмотров: 103 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Прямая перпендикулярна плоскости | | | Критерий – угловое преобразование Фишера |