Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

V Пример. Из истинного общеутвердительного суждения «Все огранённые алмазы — бриллианты» за

Категорических суждений | V Пример | Простых категорических высказываний | V Пример | V Пример | V Пример | V Пример | Логический квадрат. Умозаключения по логическому квадрату | V Пример | V Пример |


Читайте также:
  1. B16. Готовы ли Вы петь бесплатно в церковном хоре (например, если у храма нет денег, чтобы заплатить)?
  2. II. Пример разработки упаковки для парфюмерных изделий
  3. MB: Как Вы думаете, нужно ли женщине жертвовать своим до­стоинством ради того, чтобы со­хранить полную семью? К примеру, терпеть рядом дурного мужчину ради детей?
  4. T.V.: Тебе больше нравится выступать на больших фестивалях? или на небольших концертных площадках, например клубах?
  5. V Пример
  6. V Пример
  7. V Пример

Из истинного общеутвердительного суждения «Все огранённые алмазы — бриллианты» за счёт перестановки местами субъекта и предиката получим истинное общеутвердительное суждение «Все бриллианты являются огранёнными алмазами».

Из истинного же общеутвердительного суждения «Все львы — хищники» посредством обращения получим истинное частноутвердительное суждение «Некоторые хищники — львы».

 

Нетрудно заметить, что в первом случае суждение формулы SaP отвечает первой модельной схеме (субъект и предикат совпадают по объёму, распределены), поэтому при перестановке терминов местами количественная характеристика не изменяется, т. е. имеет место логическое следование SaP |= SaP.

Во втором же случае суждение формулы SaP отвечает второй модельной схеме (подчинение объёма субъекта объёму предиката, распределённость субъекта и нераспределённость предиката), поэтому при перестановке терминов местами объём сказывания сохраняется за счёт изменения количественной характеристики, т. е. имеет место логическое следование SaP |= SiP.

Таким образом, существует два вида обращения: «чистое обращение»и «обращение с ограничением».

Чистым обращением (conversio simplex) называется обращение, дающее заключение с той же количественной характеристикой, что и посылка. Такое обращение имеет место тогда и только тогда, когда S и P исходного суждения либо оба распределены, либо оба не распределены.

Помимо формулы SaP, отвечающей второй модельной схеме, по типу чистого обращения происходит умозаключение из формулы SiP, отвечающей первой модельной схеме, и из формулы SeP (S+, P+).

 


Дата добавления: 2015-09-05; просмотров: 51 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
V Пример| V Пример

mybiblioteka.su - 2015-2024 год. (0.005 сек.)