Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Порядок дифференциального уравнения

Понятие суммы степенного ряда. Ряд Тейлора | Определение | Свойства | Различные формы остаточного члена | Формула Тейлора для функции двух переменных | Формула Тейлора для большого числа переменных | Частная производная | Обозначение | Примеры | Линейные и нелинейные дифференциальные уравнения |


Читайте также:
  1. Cтрах и порядок
  2. I. Порядок перевода студентов с платного обучения на обучение за счёт средств республиканского и бюджета
  3. I. Порядок поступления в число присяжных поверенных
  4. II. Порядок предоставления скидок со сформированной стоимости обучения студентам
  5. II. Порядок проведения аттестационного тестирования
  6. III. Порядок проведения конкурса
  7. III. Порядок создания комиссии

Порядком дифференциального уравнения называют наивысший порядок производной, входящей в данное уравнение.

Простейшие дифференциальные уравнения первого порядка

Простейшие дифференциальные уравнения первого порядка — класс дифференциальных уравнений первого порядка, наиболее легко поддающихся решению и исследованию. К нему относятся уравнения в полных дифференциалах, уравнения с разделяющимися переменными, однородные уравнения первого порядка и линейные уравнения первого порядка. Все эти уравнения можно проинтегрировать в конечном виде.

Отправной точкой изложения будет служить дифференциальное уравнение первого порядка, записанное в т. н. симметричной форме:

где функции и определены и непрерывны в некоторой области .


Дата добавления: 2015-08-20; просмотров: 49 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Дифференциальное уравнение| Дифференциальные уравнения в частных производных

mybiblioteka.su - 2015-2025 год. (0.004 сек.)