Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Уравнение Клапейрона-Менделеев

Момент инерции | Момент импульса и закон его сохранения | Уравнение динамики вращательного движения твердого тела | Кинетическая энергия вращения | Гармонические колебания и их характеристики | Механические гармонические колебания | Свободные затухающие колебания. Дифференциальное уравнение свободных затухающих колебаний. Автоколебания. | И одинаковой частоты. Биения | Закон Максвелла для распределениямолекул идеального газа по скоростям | Или в более корректной форме |


Читайте также:
  1. Волновое уравнение
  2. Главное уравнение паровой турбины ПТУ 1-го рода
  3. Дифференциальное уравнение
  4. Дифференциальное уравнение диффузии
  5. Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Уравнение Аррениуса. Понятие об энергии активации. Влияние величины энергии активации на скорость реакции.
  6. Задание 10. Уравнение авторегрессии
  7. Запишите уравнение Бернулли.

Как уже указывалось, состояние некоторой массы определяется тремя термодинамическими параметрами: давлением р, объемом V и температурой Т. Между этими параметрами существует определенная связь, называемая уравнением состояния.

Французский физик Б.Клапейрон вывел уравнение состояния идеального газа, объединив законы Бойля-Мариотта и Гей-Люссака.

Рис. 49 Пусть некоторая масса газа занимает объем V1, имеет давление p1 и находится при температуре T1. Эта же масса газа в другом произвольном состоянии характеризуется параметрами р2, V2, T2 (рис. 49). Переход из состояния 1 в состояние 2 осуществляется в виде двух процессов:

1) изотермического (изотерма 1-1¢),

2) изохорного (изохора 1¢-2).

В соответствии с законами Бойля-Мариотта (1.1) и Гей-Люссака (1.4) запишем:

(1.5)

.(1.6)

Исключив из уравнений (1.5) и (1.6) p1', получим

Так как состояния 1 и 2 были выбраны произвольно, то для данной массы газа величина остается постоянной, т.е.

. (1.7)
Выражение (1.7) является уравнением Клапейрона, в котором В - газовая постоянная, различная для разных газов.

Русский ученый Д.И.Менделеев объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (1.7) к одному молю, использовав молярный объем Vm. Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем Vm, поэтому постоянная В будет одинакова для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой постоянной. Уравнению

PVm=RT (1.8)

удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Менделеева-Клапейрона.

Числовое значение молярной газовой постоянной определим из формулы (1.8), полагая, что моль газа находится при нормальных условиях (р0=1,013×105 Па, Т0=273,15 К, Vm=22,41×10-3 м3 /моль): R=8,31 Дж/(моль К).

От уравнения (1.8) для моля газа можно перейти к уравнению Клапейрона-Менделеева для произвольной массы газа. Если при некотором заданном давлении и температуре один моль газа занимает объем Vm, то при тех же условиях масса m газа займет объем , где М - молярная масса (масса одного моля вещества). Единица молярной массы - килограмм на моль (кг/моль). Уравнение Клапейрона-Менделеева для массы m газа

, (1.9)

где - количество вещества.

Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана:

.

Исходя из этого, уравнение состояния (1.8) запишем в виде

,

где - концентрация молекул (число молекул в единице объема). Таким образом, из уравнения

р=nkT (1.10)
следует, что давление идеального газа при данной температуре прямо пропор-ционально концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1 м3 газа при нормальных условиях, называется числом Лошмидта:

.

 

14. Основное уравнение молекулярно-кинетической теории идеальных газов.


Дата добавления: 2015-08-17; просмотров: 82 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Сложение взаимно перпендикулярных колебаний| Уравнение (1.11) с учетом (1.12) примет

mybiblioteka.su - 2015-2024 год. (0.009 сек.)