Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Тензоры высших рангов

Кристаллические решетки | Симметрии в двух измерениях | Симметрии в трех измерениях | Прочность металлов | Дислокации и рост кристаллов | Тензор поляризуемости | Преобразование компонент тензора | Эллипсоид энергии | Другие тензоры; тензор инерции | Векторное произведение |


Читайте также:
  1. А когда торговцы покупали себе должности в высших кругах
  2. Астрал высших.
  3. Высокоранговые и низкоранговые особи.
  4. декабря в 17-00 состоится награждение ребят, достигших наивысших достижений на международных, всероссийских и городских соревнованиях.
  5. Дифференциалы высших порядков от функции двух аргументов.
  6. Другие тензоры; тензор инерции
  7. Иная сила мне дана от Высших

Тензор напряжений Sij описывает внутренние силы в веществе. Если при этом материал упругий, то внутренние деформа­ции удобно описывать с помощью другого тензора Tij— так называемого тензора деформаций. Для простого объекта, подоб­ного бруску из металла, изменение длины DL, как вы знаете, приблизительно пропорционально силе, т. е. он подчиняется закону Гука

DL=gF.

Для произвольных деформаций упругого твердого тела тензор деформаций Tij связан с тензором напряжений Sij системой линейных уравнений

Вы знаете также, что потенциальная энергия пружины (или бруска) равна

а обобщением плотности упругой энергии для твердого тела будет выражение

Полное описание упругих свойств кристалла должно задаваться коэффициентами gijkl. Это знакомит нас с новым зверем — тен­зором четвертого ранга. Поскольку каждый из индексов может принимать одно из трех значений — х, у или z, то всего ока­зывается 34=81 коэффициент. Но различны из них на самом де­ле только 21. Во-первых, поскольку тензор Sij симметричен, у него остается только шесть различных величин, и поэтому в уравнении (31.27) нужны только 36 различных коэффициен­тов. Затем, не изменяя энергии, мы можем переставить Sij и Skl, так что gijkl должно быть симметрично при перестановке пары индексов ij и kl. Это уменьшает число коэффициентов до 21. Итак, чтобы описать упругие свойства кристалла низшей воз­можной симметрии, требуется 21 упругая постоянная! Разу­меется, для кристаллов с более высокой симметрией число необходимых постоянных уменьшается. Так, кубический кри­сталл описывается всего тремя упругими постоянными, а для изотропного вещества хватит и двух.

В справедливости последнего утверждения можно убе­диться следующим образом. В случае изотропного материала компоненты g ijkl не должны зависеть от поворота осей. Как это может быть? Ответ: они могут быть независимы, только когда выражаются через тензоры dij. Но существует лишь два воз­можных выражения, имеющих требуемую симметрию,— это dijdkl и dikdjl+dil+djk, так что gijkl должно быть их линейной комбинацией. Таким образом, для изотропного материала

gijkl = а (dijdkl) + b(dikdjl+dildjk);

следовательно, чтобы описать упругие свойства материала, тре­буются две постоянные: а и b. Я предоставляю вам самим до­казать, что для кубического кристалла требуются три такие постоянные.

И еще один последний пример (на этот раз пример тензора третьего ранга) дает нам пьезоэлектрический эффект. При на­пряженном состоянии в кристалле возникает электрическое поле, пропорциональное тензору напряжений. Общий закон пропорциональности имеет вид

где ei электрическое поле, a Pijk пьезоэлектрические коэф­фициенты (пьезомодули), составляющие тензор. Можете ли вы сами доказать, что если у кристалла есть центр инверсии (т. е. если он инвариантен относительно замены х, у, z®-х,-y,-z), то все его пьезоэлектрические коэффициенты равны нулю.


Дата добавления: 2015-08-20; просмотров: 71 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Тензор напряжений| Четырехмерный тензор электро­магнитного импульса

mybiblioteka.su - 2015-2024 год. (0.006 сек.)