Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Симметрии в трех измерениях

Внутренняя геометрия кристаллов | Химические связи в кристаллах | Рост кристаллов | Кристаллические решетки | Дислокации и рост кристаллов | Тензор поляризуемости | Преобразование компонент тензора | Эллипсоид энергии | Другие тензоры; тензор инерции | Векторное произведение |


Читайте также:
  1. Величина показателя асимметрии в исследуемых районах.
  2. Изотропность пространства относится к __________ формам симметрии.
  3. Изучение изменения симметрии листа березы методом флуктуирующей асимметрии
  4. Канон Дисимметрии Прстранства
  5. Коэффициенты для балок двутаврового сечения с двумя осями симметрии
  6. Коэффициенты для консолей двутаврового сечения с двумя осями симметрии
  7. Коэффициенты для проверки устойчивости внецентренно сжатых (сжато-изгибаемых) сквозных стержней в плоскости действия момента, совпадающей с плоскостью симметрии

До сих пор мы говорили только об узорах в двух измерениях. На самом же деле нас интересуют способы размещения атомов в трех измерениях. Прежде всего очевидно, что трехмерный кристалл имеет три основных вектора. Если же мы поинтересу­емся возможными операциями симметрии в трех измерениях, то обнаружим, что существует 230 возможных типов симметрии! По некоторым соображениям, эти 230 типов можно разделить на семь классов, представленных на фиг. 30.10.

 

 

Фиг. 30.10. Семь классов кристаллической решетки.

 

Решетка с наи­меньшей симметрией называется триклинной. Ее элементар­ная ячейка представляет собой параллелепипед. Основные век­торы все имеют разную длину и нет ни одной одинаковой пары углов между ними. И никакой вращательной или зеркальной симметрии здесь нет. Однако есть еще одна операция: при ин­версии в узле элементарная ячейка может меняться, а может и не меняться. [Под инверсией в трех измерениях мы снова подра­зумеваем, что пространственное смещение R заменяется на - R, или, другими словами, точка с координатами (х, у, z) переходит в точку с координатами (-x ,-y, - z). Поэтому симметрия триклинной решетки может быть только двух типов — с центром инверсии и без него.] Пока мы считали, что все векторы разные и расположены под произвольными углами. Если же все век­торы одинаковы и углы между ними равны, то получается тригональная решетка, изображенная на рисунке. Ячейка такой решетки может иметь добавочную симметрию; она может еще и не меняться при вращении вокруг наибольшей телесной диагонали.

Если один из основных векторов, скажем с, направлен под прямым уг­лом к двум остальным, то мы получаем моноклинную элементарную ячейку. Здесь возможна новая симметрия — вращение на 180° вокруг с. Гексагональ­ная решетка — это частный случай, когда векторы а и b равны и угол меж­ду ними составляет 60°, так что вра­щение на 60, 120 или 180° вокруг вектора с приводит к той же самой решетке (для определенных внутренних типов симметрии).

Если все три основных вектора пер­пендикулярны друг другу, но не равны по длине, получается ромбическая ячей­ка. Фигура симметрична относительно вращений на 180° вокруг трех осей. Типы симметрии более высокого поряд­ка возникают у тетрагональной ячей­ки, все углы которой прямые и два основных вектора равны. Наконец, имеется еще кубическая ячейка, самая симметричная из всех.

Основной смысл всего этого разго­вора о типах симметрии состоит в том, что внутренняя симметрия кристалла проявляется (иногда весьма тонким образом) в макроскопических физичес­ких свойствах кристалла. В гл. 31 мы увидим, например, что электрическая поляризуемость кристалла, вообще го­воря, представляет собой тензор. Если описывать тензор в терминах эллипсои­да поляризуемости, то мы должны дока­зать, что некоторые типы симметрии кристалла проявятся в этом эллипсоиде. Так, кубический кристалл симметричен по отношению к вращению на 90° вокруг любого из трех взаим­но перпендикулярных направлений. Единственный эллипсоид с таким свойством,—очевидно, сфера. Кубический кристалл должен быть изотропным диэлектриком.

С другой стороны, тетрагональный кристалл обладает вра­щательной симметрией четвертого порядка. Две главные оси его эллипсоида должны быть равны, а третья должна быть па­раллельна оси кристалла. Аналогично, поскольку ромбический кристалл обладает вращательной симметрией второго порядка относительно трех перпендикулярных осей, его оси должны совпадать с осями эллипсоида поляризуемости. Точно так же одна из осей моноклинного кристалла должна быть параллельна одной из главных осей эллипсоида, хотя о других осях мы ни­чего сказать не можем. Триклинный кристалл не обладает вра­щательной симметрией, поэтому его эллипсоид может иметь любую ориентацию.

Как видите, мы можем с пользой провести время, придумы­вая всевозможные типы симметрии и связывая их со всевозмож­ными физическими тензорами. Мы рассмотрели только тензор поляризуемости, здесь дело было простое, а для других тен­зоров, например для тензора упругости, рассуждать будет труднее. Существует раздел математики, называемый «теорией групп», который занимается такими вещами, но обычно можно сообразить все, что нужно, опираясь лишь на здравый смысл.


Дата добавления: 2015-08-20; просмотров: 76 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Симметрии в двух измерениях| Прочность металлов

mybiblioteka.su - 2015-2025 год. (0.007 сек.)