Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Векторное произведение

Химические связи в кристаллах | Рост кристаллов | Кристаллические решетки | Симметрии в двух измерениях | Симметрии в трех измерениях | Прочность металлов | Дислокации и рост кристаллов | Тензор поляризуемости | Преобразование компонент тензора | Эллипсоид энергии |


Читайте также:
  1. NUMARK MixDeck Quadуниверсальная DJ-система, воспроизведение CD, mp3 CD, USB-накопителей, USB-MIDI-контроллер
  2. Векторное кольцо
  3. Водяные часы – техническое произведение искусства
  4. Вопрос 18 Свободное воспроизведение программ для ЭВМ и баз данных. Декомпилирование программ для ЭВМ
  5. Вопрос 19 Договор об отчуждении исключительного права на произведение
  6. Вопрос 23 Охрана и защита авторских прав. Ответственность за нарушение исключительного права на произведение

Сами того не подозревая, вы пользуетесь тензором второго ранга уже начиная с гл. 20 (вып. 2). В самом деле, мы опреде­лили там «момент силы, действующий в плоскости», например txy, следующим образом:

t xy=xFy-yFx.

Обобщая это определение на три измерения, можно написать

tij=riFj-rjFi. (31.22)

Как видите, величина tij — это тензор второго ранга. Один из способов убедиться в этом — свернуть tij с каким-то век­тором, скажем с единичным вектором е, т. е. составить

Если эта величина окажется вектором, то t ij должен преобра­зовываться как тензор — это просто наше определение тензора. Подставляя выражение для tij, получаем

Поскольку скалярные произведения, естественно, являются скалярами, то оба слагаемых в правой части — векторы, как и их разность. Так что tij-— действительно тензор.

Однако tijпринадлежит к особому сорту тензоров, он антисимметричен, т. е.

tij=-tji.

Поэтому у такого тензора есть только три разные и неравные нулю компоненты: txy, tyz и tzz. В гл. 20 (вып. 2) нам удалось показать, что эти три члена почти «по счастливой случайности» преобразуются подобно трем компонентам вектора; поэтому мы могли тогда определить вектор

t=(tx,. ty, tz) = (tyz, tzx, txy).

Я сказал «по случайности» потому, что это происходит только в трехмерном пространстве. Например, для четырех измерений антисимметричный тензор второго ранга имеет шесть различных ненулевых членов, и его, разумеется, нельзя заменить векто­ром, у которого компонент только четыре.

Точно так же как аксиальный вектор t == r X F является тен­зором, по тем же соображениям тензором будет и любое век­торное произведение двух полярных векторов. К счастью, они тоже представимы в виде вектора (точнее, псевдовектора), что немного облегчает нам всю математику.

Вообще говоря, для любых двух векторов а и b девять ве­личин aibj образуют тензор (хотя для физических целей он не всегда может быть полезен). Таким образом, для вектора по­ложения r величины rirjявляются тензором, а поскольку dij. тоже тензор, то мы видим, что правая часть (31.20) действитель­но является тензором. Подобным же образом тензором будет и (31.22), так как оба члена в правой части — тензоры.


Дата добавления: 2015-08-20; просмотров: 66 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Другие тензоры; тензор инерции| Тензор напряжений

mybiblioteka.su - 2015-2024 год. (0.005 сек.)