Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Правильность мысли есть необходимое, но недостаточно условие для установления её истинности. Чтобы быть истинной, мысль должна соответствовать действительности верно отражать ее.

Рузавин Г.И. | Введение | Логика как наука | Основные этапы развития логики | Логика и другие науки | ГЛАВА. Понятие как форма мышления | Понятие как результат обобщения | Отношения между понятиями | Обобщение и ограничение понятий | Определение понятий. Их основные виды |


Читайте также:
  1. Be bold, be bold (будь смелой), but not too bold (но не слишком смелой), Lest that your heart’s blood should run cold (чтобы твоего сердца кровь не бежала холодной).
  2. Gt; Часть ежегодно потребляемого основного напитала не должна ежегодно воз­мещаться в натуре. Например, Vu стойкости машины в течение года перенесена на
  3. II. Культурологическая мысль. Концепции (теории) культуры
  4. II. Острая спутанность сознания в сочетании с недостаточной психомоторной активностью
  5. IX. Что надо знать и уметь воспитателю, чтобы противостоять распространению наркотизма в учебном заведении
  6. L’art pour l’art[63]: учиться, чтобы учиться
  7. quot;У меня было достаточно ошибок, чтобы удержать свое самомнение на разумном уровне." М.Отуотер.

 

Смешение этих понятий иногда может привести к противоречиям и ошибкам, особенно когда это касается абстрактных теорий. Известно, что вплоть до открытия неевклидовой геометрии Н.И. Лобачевским геометрия Евклида считалась единственно верным геометрически» учением об окружающем нас физическом пространстве. Если заменить в этой геометрии аксиому о параллельных на противоположную, т.е. допустить, что через точку вне данной прямой на плоскости можно провести к ней по крайней мере две параллельные линии, то полученная в результате этого неевклидова геометрия будет такой же логически непротиворечивой, т.е. правильной, как иобычная геометрия Евклида. Хотя с точки зрения логической правильности обе геометрии одинаково допустимы и равноценны, но теоремы неевклидовой геометрии кажутся весьма необычными человеку, воспитанному на геометрии Евклида. Так, сумма углов треугольника в геометрии Лобачевского меньше 180 градусов, а число параллельных, которые можно провести к данной прямой, бесконечно велико. По этим причинам геометрия Лобачевского встретила серьезное сопротивление со стороны традиционно мыслящих математиков и была признана лишь много времени спустя.

Но какая же из этих геометрий истинна? На этот вопрос можно получить ответ, только сопоставив их результаты с данными экспериментальных физических исследований, например измерив сумму внутренних углов треугольника, две вершины которого находятся на Земле, а третья, скажем, на Сириусе или иной звезде. Но для наших земных и околоземных расстояний расхождения между теорией и опытом пренебрежимо малы. Этот примечательный случай из истории геометрии показывает, насколько важно отличать логическую правильность от фактической истинности, когда речь идет о применении абстрактных теорий к реальному миру. Если логическая правильность, или, как говорят математики, непротиворечивость теории, может быть установлена логико-математическими методами, то ее фактическая истинность требует обращения к эмпирическим методам исследования, которые как раз и обнаруживают соответствие или расхождение выводов теории с действительностью.


Дата добавления: 2015-07-25; просмотров: 54 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Понятие о логической форме и правильности мышления| Логика и язык

mybiblioteka.su - 2015-2024 год. (0.012 сек.)