Читайте также:
|
|
Под вероятностью случайного события в математике понимают меру возможности осуществления данного события в конкретных условиях эксперимента (испытания).
Рассмотрим некоторую конечную полную группу равновозможных элементарных событий (исходов) т. е. совокупность всех единственно возможных, несовместных и вместе с тем равновозможных результатов некоторого испытания, причем пусть интересующее нас случайное событие A осуществляется тогда и только тогда, когда наступают некоторые из элементарных событий указанной полной группы. Пусть таких событий, благоприятствующих для события A, насчитывается m (естественно, m<n). Тогда вероятность события A определяют следующим образом:
Определение. Вероятностью Р(А) случайного события A называется отношение количества m элементарных событий, благоприятствующих событию A, к общему количеству элементарных событий n:
, (1)
Поскольку в общем случае 0<m<n, то из этого определения, называемого классическим определением вероятности случайного события, следует, что вероятность произвольного случайного события принадлежит отрезку , т.е.
0<P(A)<1, (2)
Пример 1. Найти вероятность того, что при извлечении наугад одной таблетки из коробки, в которой находятся 2 таблетки анальгина, 3 таблетки аспирина и 5 таблеток димидрола, извлеченная таблетка окажется таблеткой аспирина.
Решение. Поскольку общее количество элементарных событий (исходов) для данного испытания образует полную группу из n = 10 равновозможных событий (по общему количеству таблеток в коробке), из которых только m = 3 элементарных события (по количеству таблеток аспирина) являются благоприятствующими для интересующего нас события (обозначим это событие через A), по формуле (1) получим:
Дата добавления: 2015-07-25; просмотров: 42 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Некоторые виды событий | | | Случайные величины |