Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Метод наименьших квадратов

Полиномиальная интерполяция | Интерполяция каноническим полиномом | Интерполяционный полином Лагранжа | Интерполяционный полином Ньютона |


Читайте также:
  1. A. Крапельний метод
  2. A. Метод дражування, диспергування в системі рідина-рідина, метод напилювання в псевдорозрідженому шарі, центрифужне мікрокапсулювання
  3. I Рамочная проблемно-ориентированную методика анализа и решения организационно-экономических задач
  4. I. МЕТОДИКА ПРОВЕДЕНИЯ СЕЙСМОКАРОТАЖА
  5. I. Методические указания для студентов
  6. I.Организационно-методический раздел
  7. I1. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЕ УКАЗАНИЯ

В практике обработки экспериментальных данных могут быть ситуации, когда применение лагранжевой аппроксимации (полиномиальной или сплайновой) не оправдано или в принципе невозможно. Первым примером такой ситуации могут служить случаи, когда набор экспериментальных данных был получен со значительной погрешностью, либо на измеряемую (зависимую) величину влияли некоторые дополнительные, не учитываемые факторы. Для демонстрации этой ситуации на рис.5.5 представлены экспериментальные точки, истинная неизвестная кривая f (x) и аппроксимирующая кривая (x), полученная одним из методов лагранжевой аппроксимации. Второй пример, представленный на рис.5.6, демонстрирует ситуацию, когда экспериментальные замеры в каждом узле проводились неоднократно и, вследствие погрешности измерительных приборов либо каких-либо других факторов, дали разные результаты. В этом случае применение лагранжевой аппроксимации в принципе невозможно, так как каждому узлу x i соответствует несколько разных значений f i.

В этих условиях требуется проводить аппроксимирующую кривую, которая не обязательно проходит через узловые точки, но в то же время отражает исследуемую зависимость и сглаживает возможные выбросы, возникшие из-за погрешности эксперимента.

 

Рис.5.5. Рис.5.6.

 

Как и в описанных выше методах аппроксимации считаем известными значения экспериментальных данных в узлах f (x i) = f i и через (x) обозначим непрерывную аппроксимирующую функцию. В узлах значения функций f (x) и (x) будут отличаться на величину i = f (x i) - (x i). Отклонения i могут принимать как положительные, так и отрицательные значения. Чтобы не учитывать знаки, возведем каждое отклонение в квадрат, а для оценки близости функций f (x) и (x) возьмем сумму этих квадратов

Q = = .   (5.11)

Метод построения аппроксимирующей функции (x) из условия минимума величины Q называется методом наименьших квадратов (далее - МНК).

Наиболее распространен способ выбора функции (x) в виде линейной комбинации

(x) = с 0 0(x) + с 1 1(x) + … + сm m(x), (5.12)

где 0(x), 1(x), …, m(x) - базисные функции; ;

с 0, с 1, …, сm - коэффициенты, определяемые при минимизации величины Q.

Математически минимум величины Q достигается при равенстве нулю частных производных от Q по всем коэффициентам с 0, с 1, …, сm:

 
  (5.13)
.......................................................................  
 

 

Эта система линейных алгебраических уравнений относительно неизвестных с 0, с 1, …, сm называется системой нормальных уравнений, а матрица ее коэффициентов имеет следующий вид:

    (5.14)

Элементы матрицы (5.14) являются скалярными произведениями базисных функций

.   (5.15)

Так как , то матрицу (5.14) можно переписать в виде

    (5.16)

Матрица (5.16) называется матрицей Грама.

Расширенная матрица системы (5.13) получается добавлением справа к (5.16) сто­л­б­ца свободных членов

,     (5.17)

где - скалярные произведения. аналогичные (5.15).

При обработке экспериментальных данных, полученных с погрешностью в каждой узловой точке, обычно начинают с аппроксимации функцией , представленной одной-двумя базисными функциями. После определения коэффициентов с k вычисляется ве­ли­чина Q по формуле (5.11). Если окажется, что , то необходимо расширить базис добавлением новых базисных функций . Расширение базиса необходимо про­­должать до тех пор, пока не выполнится условие .

Выбор конкретных базисных функций зависит от свойств аппроксимируемой функции f (x), таких, как периодичность, экспоненциальный или логарифмический характер, симметричность, наличие асимптот и т.д. Различные варианты базисов рассматриваются достаточно подробно в [1]. Здесь рассмотрим лишь частный случай, когда аппрксимирующая функция представлена двумя базисными функциями, т.е.

Система уравнений для нахождения коэффициентов A, B выглядит так:

(5.18)

 

где ;
  , ;
  , .

Решим систему (1) по правилу Крамера:

, .

или окончательно получаем:

 

, / (5.19)

Рассмотрим частный случай линейной аппроксимации, т.е. когда график аппро­кси­мирующей функции есть прямая линия: . В этом случае базисные функции имеют вид: , . Тогда из (5.19) получаем:

, .

В последних формулах для А и В поделим числитель и знаменатель на (n +1)2:

, ,

или

, ,

где символ "надчеркивание" обозначает среднее значение:

С целью уменьшения количества вычислительных действий формулу для коэф­фи­циента А можно получить в более коротком виде. Из первого уравнения системы (1) выразим А через В:

.

Тогда при , путем аналогичных изложенному выше выкладок получаем: .

Окончательно формулы коэффициентов при линейной аппроксимации выглядят сле­дующим образом:

  , , (5.20)
где - среднее значение узловых точек аппроксимации;  
  - средний квадрат значений узловых точек аппроксимации;  
  - среднее значение аппроксимируемой функции в узловых точках;  
    - среднее произведений значений аппроксимируемой функции в узловых точках на значения соответствующих узловых точек.  
           

Если требуется построить аппроксимирующую функцию, имеющую нелинейный характер относительно независимой переменной x, то иногда удается перейти к линейной зависимости. Например, пусть требуется найти аппроксимирующую функцию в виде:

. (5.21)

Прологарифмируем значения аппроксимируемой функции f (x) в узловых точках:

, i =0,1,2,…, n

и для реализации по формулам (5.20) найдем линейную аппроксимирующую функцию

(5.22)

Формулы (5.20) выглядят при этом так:

. (5.23)

Чтобы теперь осуществить переход от функции к функции , надо пропотенцировать обе части равенства (5.22):

Величину обозначим , а коэффициенты с и d, входящие в (5.21), вычисляются по формулам:

. (5.24)

Следовательно, последовательность действий при аппроксимации экспоненциальной зависимостью (5.21) выглядит так:

1) вычисление логарифмов значений аппроксимируемой функции ;

2) вычисление коэффициентов и по формулам (5.23);

3) вычисление коэффициентов c и d, по формулам (5.24);

4) вычисление значений по формуле (5.21).


Дата добавления: 2015-07-19; просмотров: 68 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Интерполяция сплайнами| Метод наименьших квадратов.

mybiblioteka.su - 2015-2024 год. (0.01 сек.)