Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Структура общего решения

Линейные однородные дифференциальные уравнения | Линейные неоднородные дифференциальные уравнения | A) Подставляем полученное соотношение в исходное уравнение | Уравнение Бернулли. | Уравнения в полных дифференциалах | Геометрическая интерпретация решений дифференциальных уравнений первого порядка. | Метод Эйлера | Дифференциальные уравнения высших порядков | Уравнения, допускающие понижение порядка | Пример. |


Читайте также:
  1. HI. Лакан: структура детерминации
  2. I Рамочная проблемно-ориентированную методика анализа и решения организационно-экономических задач
  3. I. Определение состава общего имущества
  4. I. Соображения общего порядка
  5. I. Структура как оперативная модель
  6. I. Структура открытого логопедического занятия
  7. II. КОНФЛИКТЫ И ПУТИ ИХ РАЗРЕШЕНИЯ.

Определение. Фундаментальной системой решенийлинейного однородного дифференциального уравнения n –го порядка на интервале (a, b) называется всякая система n линейно независимых на этом интервале решений уравнения.

Определение. Если из функций y i составить определитель n –го порядка

,

то этот определитель называется определителем Вронского.

Теорема: Если функции линейно зависимы, то составленный для них определитель Вронского равен нулю.

Теорема: Если функции линейно независимы, то составленный для них определитель Вронского не равен нулю ни в одной точке рассматриваемого интервала.

Теорема: Для того, чтобы система решений линейного однородного дифференциального уравнения была фундаментальной необходимо и достаточно, чтобы составленный для них определитель Вронского был не равен нулю.

Теорема: Если - фундаментальная система решений на интервале (a, b), то общее решение линейного однородного дифференциального уравнения является линейной комбинацией этих решений.

,

где Ci – постоянные коэффициенты.

Применение приведенных выше свойств и теорем рассмотрим на примере линейных однородных дифференциальных уравнений второго порядка.


Дата добавления: 2015-07-16; просмотров: 49 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Уравнения, не содержащие явно независимой переменной| Общее решение линейного однородного дифференциального уравнения второго порядка

mybiblioteka.su - 2015-2024 год. (0.005 сек.)