Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Лабильность (функциональная подвижность). 6 страница

Лабильность (функциональная подвижность). 8 страница | Лабильность (функциональная подвижность). 9 страница | Лабильность (функциональная подвижность). 10 страница |


Читайте также:
  1. 1 страница
  2. 1 страница
  3. 1 страница
  4. 1 страница
  5. 1 страница
  6. 1 страница
  7. 1 страница

 

 

138. Значение петли Генле в мочеобразовании. Поворотно-противоточная система.

Петля Генле вместе с капиллярами почечных прямых сосудов и почечной собирательной трубкой создает и поддерживает продольный градиент осмотического давления в мозговом веществе почек по направлению от почечного коркового вещества к почечному сосочку за счет повышения концентрации хлористого натрия и мочевины. Благодаря этому градиенту возможно удаление все большего количества воды путем осмоса из просвета канальца в интерстициальное пространство почечного мозгового вещества, откуда она переходит в прямые почечные сосуды. В конечном счете, в почечной соединительной трубке образуется гипертоническая моча. Движение ионов, мочевины и воды между петлей Генле, прямыми сосудами и собирательной трубкой можно описать следующим образом:

Короткий и относительно широкий (30 мкм) верхний сегмент нисходящего колена петли Генле непроницаем для солей, мочевины и воды. По этому участку фильтрат переходит из проксимального извитого почечного канальца в более длинный тонкий (12 мкм) сегмент нисходящего колена петли Генле, свободно пропускающий воду.

Благодаря высокой концентрации хлористого натрия и мочевины в тканевой жидкости почечного мозгового вещества создается высокое осмотическое давление, вода отсасывается из фильтрата и поступает в почечные прямые сосуды.

В результате выхода воды из фильтрата его объем уменьшается на 5 % и он становится гипертоничным. В верхушке мозгового вещества (в почечном сосочке) нисходящее колено петли Генле изгибается и переходит в восходящее колено, которое по всей своей длине проницаемо для воды.

Нижний участок восходящего колена - тонкий сегмент - проницаем для хлористого натрия и мочевины, и хлористый натрий диффундирует из него, а мочевина диффундирует внутрь.

В следующем, толстом сегменте восходящего колена эпителий состоит из уплощенных кубовидных клеток с рудиментарной щеточной каемкой и многочисленными митохондриями. В этих клетках осуществляется активный перенос ионов натрия и хлора из фильтрата.

Вследствие выхода ионов натрия и хлора из фильтрата повышается осмолярность почечного мозгового вещества, а в дистальные извитые почечные канальцы поступает гипотоничный фильтрат. Клетки эпителиальные, выполняющие барьерную функцию (главным образом) клетки эпителиальные мочеполового тракта, выполняющие барьерную функцию.

 

139. Основные процессы, происходящие в дистальных извитых канальцах почки. Их значение.

Каналец извитой дистальный. Дистальный извитой каналец подходит к мальпигиеву тельцу и весь лежит в почечном корковом веществе. Клетки дистальных канальцев имеют щеточную каемку и содержат много митохондрий. Именно этот отдел нефрона ответственен за тонкую регуляцию водно-солевого баланса и регуляцию рН крови. Проницаемость клеток дистального извитого канальца регулируется антидиуретическим гормоном.

 

140. Механизм изменения диуреза после водной нагрузки. Осморегулирующий рефлекс. (?)

жидкость, введенная парентерально, как правило, выделяется из организма медленнее, чем принятая через рот, что еще раз говорит против исключительной роли гидремии или гипергидратации тканей в механизме диуреза.

Учитывая, что единственным естественным путем пополнения запасов воды в организме является поступление жидкости через желудочно-кишечный тракт, мы предположили, что уже само поступление ее в организм имеет значение для стимуляции диуреза.

Значение акта питья для стимуляции диуреза показано также в опытах с дробным введением воды. Сравнивая диурез при однократном введении воды и при питье того же количества мелкими порциями, можно было, увеличивая число порций, а следовательно уменьшая величину каждой из них, значительно изменять характер предполагаемых рефлекторных влияний со стороны верхнего отдела пищеварительного тракта.

В экспериментах, когда водную нагрузку животные получали в виде однократного питья 500-600 мл жидкости или дробно (10 порций того же объема жидкости, которые они получали с 5-минутными интервалами на протяжении 45 мин), кривая мочеотделения значительно изменялась: при дробном питье диурез был выражен меньше главным образом в первый час, хотя учет его начинали вести с того момента, когда было выпито 4-5 порций. Нам представляется, что при дробной водной нагрузке происходит как бы "вкрадывание" слишком слабых (возможно, подпороговых) нервных импульсов со стороны пищеварительного тракта, вследствие чего диурез начинается вяло, подобно тому, который наблюдается при парентеральном введении жидкости.

В поисках более прямых доказательств значения рефлекторных влияний со стороны верхнего отдела пищеварительного тракта для бурного начала диуреза после водной нагрузки мы воспользовались методическим приемом, который назван удлиненным питьем. При этом собаку вынуждали выпивать обычное количество воды мелкими глотками в течение 10-15 мин. Это достигалось несложным приспособлением, с помощью которого вода поступала в миску непрерывно, но медленно. При этом собака делала множество лакательных движений, проглатывая каждый раз небольшое количество жидкости. Регулируя поступление воды с помощью зажима, можно было изменять продолжительность питья. Начало и конец питья устанавливали таким образом, чтобы середина этого периода соответствовала питью воды в контрольных опытах. В 5 сериях опытов трехчасовой диурез существенно не изменился, но диурез за первый час при удлиненном питье был значительно выше (в среднем на 24%), чем при обычном, особенно за первые 30 мин, когда увеличение составило в среднем 73%. Можно полагать, что более выраженное начало водного диуреза зависело от суммации импульсов, идущих к нервным центрам из полости рта и глотательного аппарата, поскольку число лакательных движений при обычном и удлиненном питье было различным (например, 280 и около 800 соответственно).

Полученные результаты подтверждают, что верхний отдел пищеварительного тракта может быть рефлексогенной зоной, стимулирующей начало диуреза. Значение акта питья для диуреза было проверено и с помощью введения воды непосредственно в желудок. Действительно, если приведенные факты правильно отражают роль интероцептивных влияний при питье для начала водного диуреза, можно было ожидать более диуретическую реакцию, если вводить воду, минуя ротовую полость и пищевод. Опыты были проведены на трех собаках с выведенными мочеточниками и фистулами желудка по Басову. На фоне стандартного водного режима давали водную нагрузку в одних опытах путем обычного питья, в других - через фистулу желудка. У всех животных диурез был ниже при введении воды непосредственно в желудок. При этом отставание было более заметно на первом часу после нагрузки (в среднем на 18,3% по сравнению с диурезом после питья). Такие же результаты были получены на людях в лаборатории Г.П. Конради, где А.П. Кандель и С.Н. Кнеллер (1954) сравнивали диурез при питье воды и при вливании ее в желудок через зонд. Во втором случае диуретическая реакция была менее выражена.

Водная нагрузка часто сопровождается усилением мочеотделения уже в первые 15 мин. Это дало возможность сравнить самую раннюю фазу водного диуреза при введении воды через рот и через фистулу желудка: диурез в первые 15 мин после питья увеличивается более чем вдвое, тогда как после введения непосредственно в желудок он увеличивается всего на 30%.

 

141. Механизм изменения диуреза при водном голодании.

Водное голодание вызывает понижение диуреза (способствует развитию уремии), понижение секреции слюнных желез (предрасполагает к развитию паротита), понижение секреции желудка (ведет к кишечному дисбактериозу).

 

8. Физиология желез внутренней секреции

142. Гуморальная регуляция функций. Факторы гуморальной регуляции. Виды биологически активных веществ.

Гуморальный (от лат. humor – жидкость) механизм регуляции осуществляется за счет химических веществ, находящихся в циркулирующих в организме жидкостях, т.е. в крови, лимфе и тканевой жидкости. Факторами гуморальной регуляции функций могут быть: I) физиологически активные вещества – гормоны; 2) некоторые специфические продукты обмена веществ клеток, в том числе и медиаторы (ацетилхолин, норадреналин и др.); 3) некоторые неспецифические продукты обмена веществ клеток (например, СО2 оказывает возбуждающее действие на клетки дыхательного центра продолговатого мозга); 4) некоторые вещества, поступающие вместе с продуктами питания, при дыхании, через кожу (например, никотин, вдыхаемый с табачным дымом, снижает возбудимость нервных клеток и оказывает отрицательное воздействие на деятельность многих клеток и тканей). Термин гормон (от греч. hormao – привожу в движение, возбуждаю) был введен В. Бейлисом и Е. Старлингом. По химическому строению гормоны высших животных и человека можно разделить на три основные группы: 1) белки и пептиды; 2) производные аминокислот; 3)стероиды. Биосинтез гормонов запрограммирован в генетическом аппарате специализированных эндокринных клеток.

По своему функциональному действию гормоны подразделяются на эффекторные, которые оказывают влияние непосредственно на орган-мишень, и тропные, основной функцией которых является регуляция синтеза и выделения эффекторных гормонов. Кроме того, нейронами гипоталамуса вырабатываются нейрогормоны, одни из которых – либерины стимулируют секрецию гормонов передней доли гипофиза, а другие тормозят этот процесс –статины.

Выделяют три основные функции гормонов: 1) регуляция обмена веществ, в результате которой обеспечивается адаптация организма к условиям существования и поддерживается гомеостаз; 2) обеспечение развития организма, т.к. гормоны влияют на размножение организма, рост и дифференцировку клеток и тканей; 3) коррекция физиологических процессов в организме, т.е. гормоны могут вызвать, усилить или ослабить работу каких-то органов к осуществление физиологических реакций, что также обеспечивает адаптацию и гомеостаз организма.

Действие гормонов на клетки-мишени осуществляется путем влияния на активность ферментов, на проницаемость клеточных мембран и на генетический аппарат клетки.

Стероидные гормоны имеют относительно небольшие размеры молекул и могут проникать через клеточную мембрану.

Гормоны обладают рядом характерных свойств: 1. Высокая биологическая активность. 2. Специфичность действия. 3. Дистантность действия. 4. Гормоны стероидной группы и в меньшей степени гормоны щитовидной железы сравнительно легко проникают через мембраны клеток.5. Гормоны сравнительно быстро разрушаются в тканях и особенно в печени.6. Гормоны стероидной и аминокислотной групп не имеют видовой специфичности и поэтому возможно применение для лечения человека гормональных препаратов, полученных от животных.

Регуляция уровня выделения гормонов осуществляется несколькими способами: 1) прямое влияние на клетки железы того вещества, уровень которого контролируется данным гормоном (например, при повышении концентрации глюкозы в крови, протекающей через поджелудочную железу, увеличивается секреция инсулина, снижающего уровень глюкозы); 2) гормоны, вырабатываемые одними железами, оказывают влияние на выделение гормонов другими железами (например, тиреотропный гормон гипофиза стимулирует секрецию гормонов щитовидной железой); 3) нервная регуляция образования гормонов осуществляется главным образом через гипоталамус путем изменения уровня секреции нейронами гипоталамуса либеринов и статинов, которые поступают в переднюю долю гипофиза и влияют там на выделение гормонов; 4) выработка гормонов клетками мозгового вещества надпочечников и эпифиза увеличивается при непосредственном поступлении к ним нервных импульсов. Нервные волокна, иннервирующие другие эндокринные железы регулируют в основном тонус кровеносных сосудов и кровоснабжение железы, тем самым влияя и на секрецию гормонов.

Разные гормоны, вырабатываемые разными железами, могут взаимодействовать между собой. Это взаимодействие может выражаться в синергизме и антагонизме действия гормонов.

 

143. Эндокринная система человека. Гормоны, их классификация, функции и

механизмы действия.

Эндокринная система представляет собой функциональное объединение специализированных для внутренней секреции клеток, тканей и органов. Основной их функцией является синтез и секреция во внутреннюю среду организма (инкреция) молекул гормонов. Таким образом, эндокринная система осуществляет гормональную регуляцию процессов жизнедеятельности. Эндокринной функцией обладают: 1) органы или железы внутренней секреции, 2) эндокринная ткань в органе, функция которого не сводится лишь к внутренней секреции, 3) клетки, обладающие наряду с эндокринной и неэндокринными функциями.

 

143. Эндокринная система человека. Гормоны, их классификация, функции и

механизмы действия.

Эндокринная система представляет собой функциональное объединение специализированных для внутренней секреции клеток, тканей и органов. Основной их функцией является синтез и секреция во внутреннюю среду организма (инкреция) молекул гормонов. Таким образом, эндокринная система осуществляет гормональную регуляцию процессов жизнедеятельности. Эндокринной функцией обладают: 1) органы или железы внутренней секреции, 2) эндокринная ткань в органе, функция которого не сводится лишь к внутренней секреции, 3) клетки, обладающие наряду с эндокринной и неэндокринными функциями.

 

Таблица 6.1. Органы, ткани и клетки с эндокринной функцией

 

Органы Ткань, клетки Гормоны
I Энд. железы    
1. Гипофиз а) Аденогип. Кортикотрофы Гонадотрофы Тиреотрофы Соматотрофы Лактотрофы Кортикотропин Меланотропин Фоллитропин Лютропин Тиреотропин Соматотропин Пролактин
- б) нейрогип. Питуициты Вазопрессин Окситоцин Эндорфины
  Надпочечники а) корковое вещество б) мозговое вещество Клубочковая зона Пучковая зона Сетчатая зона Хромаффинные клетки Минералокортикоиды Глюкокортикоиды Половые стероиды Адреналин (Норадреналин) Адреномедуллин
  Щит. жел. Фолликулярные тиреоциты К-клетки фТрийодтиронин Тетрайодтиронин Кальцитонин
  Околощит. жел. Главные клетки К-клетки Паратирин Кальцитонин
  Эпифиз Пинеоциты Мелатонин
II Орг. с эндокр. тк.    
  Поджел. жел. Островки Лангерганса альфа-клетки бета-клетки дельта-клетки Глюкагон Инсулин Соматостатин
  Половые железы а) семенники б)яичники Клетки Лейдига Клетки Сертолли Клетки гранулезы Желтое тело Тестостерон Эстерогены Ингибин Эстрадиол Эстрон Прогестерон Прогестерон
III Ор. с инкреторной ф-ей кл.    
  Жкт Эндокринные и энтерохромаффинные клетки желудка и тонкого кишечника Регуляторные пептиды
  Плацента Синцитиотрофобласт Цитотрофобласт Хорионический гонадотропин Пролактин Эстриол Прогестерон
  Тимус Тимоциты Тимозин, Тимопоэтин, Тимулин
  Почка ЮГА Перитубуляерные клетки Канальцы Ренин Эритропоэтин Кальцитриол
  Сердце Миоциты предсердий Атриопептид Соматостатин Ангиотензин-II
  Кровеносные сосуды Эндотелиоциты Эндотелины NO Гиперполяризующий фактор Простагландины Регуляторы адгезии

 

Гормоны подразделяют по химической природе на три группы:

1) производные аминокислот — тиреоидные гормоны, адреналин, гормоны эпифиза;

2) пептидные гормоны, простые (протеины) и сложные (гликопротеи-ды) белки — гипоталамические нейропептиды, гормоны гипофиза, островкового аппарата поджелудочной железы, околощитовидных желез;

3) стероидные гормоны, образующиеся из холестерина гормоны коры надпочечников, половых желез, гормон почечного происхождения кальцитриол.

Механизмы действия гормонов

Первый этап действия гормонов заключается в их взаимодействии со специфическими макромолекулами клетки, так называемыми гормональными рецепторами, расположенными либо на плазматической мембране клеточной поверхности, либо в цитоплазме.

1)Гормоны, рецепторы которых расположены на поверхности клеток. Гормоны первого типа связываются поверхностными рецепторами, расположенными на плазматической мембране.

2) Гормоны, рецепторы которых расположены внутри клетки (стероидные и тиреоидные гормоны).

Основные функции гормонов

1. обеспечивают физическое, умственное и половое развитие.

2. обеспечивают адаптацию организма к изменяющимся условиям.

3. обеспечивают поддержание гомеостаза (кальцитонин).

4. выполняют роль сигнальных веществ. С их помощью клетки устанавливают связи между органами и тканями, обмениваются необходимой информацией.

 

144. Гормоны гипоталамуса: физиологическая роль, регуляция секреции. Гипоталамо-гипофизарная система.

Гипоталамус представляет собой образование из нервной ткани, расположенное в головном мозге. В гипоталамусе содержится огромное число отдельных групп нервных клетках, которые называются ядрами. Общее число ядер около 150. Эндокринная функция гипоталамуса тесно связана с работой нижнего мозгового придатка – гипофиза. В клетках и ядрах гипоталамуса выделяются:

Гипоталамические гормоны – либерины и статины, которые регулируют гормонпродуцирующую функцию гипофиза.

Тиреолиберин – стимулирует выработку тиротропина в гипофизе.

Гонадолиберин – стимулирует выработку в гипофизе гонадотропных гормонов.

Кортиколиберин – стимулирует выработку в гипофизе кортикотропина.

Соматолиберин – стимулирует выработку в гипофизе гормона роста – соматотропина.

Соматостатин – угнетает выработку в гипофизе гормона роста.

Эти гормоны поступают в особую кровеносную систему, связывающую гипоталамус с передней долей гипофиза. Два из ядер гипоталамуса производят гормоны вазопрессин и окситоцин. Окситоцин стимулирует выделение молока во время лактации. Вазопрессин или антидиуретический гормон контролирует водный баланс в организме, под его влиянием усиливается обратное всасывание воды в почках. Эти гормоны накапливаются в длинных отростках нервных клеток гипоталамуса, которые заканчиваются в гипофизе. Таким образом, запас гормонов гипоталамуса окситоцина и вазопрессина хранится в задней доле гипофиза.

Гипофиз или нижний мозговой придаток называют главной эндокринной железой организма человека. Он расположен в костной полости, которая называется турецким седлом. Гипофиз расположен на основании головного мозга и прикрепляется к мозгу тонким стеблем. По этому стеблю гипофиз связан с гипоталамусом. Гипофиз состоит из передней и задней долей. Промежуточная доля у человека недоразвита. В передней доле гипофиза, ее называют аденогипофиз, производится шесть собственных гормонов. В задней доле гипофиза, называемой нейрогипофиз, накапливаются два гормона гипоталамуса – окситоцин и вазопрессин.

Гормоны, которые производит передняя доля гипофиза:

Пролактин. Этот гормон стимулирует лактацию (образование материнского молока в молочных железах).

Соматотропин или гормон роста – регулирует рост и участвует в обмене веществ.

Гонадотропины – ЛГ и ФСГ. Они контролируют половые функции у мужчин и женщин.

Тиротропин- регулирует работу щитовидной железы.

Адренокортикотропин. Адренокортикотропный гормон стимулирует выработку глюкокортикоидных гормонов корой надпочечников.

 

145. Эффекторные и гландотропные гормоны аденогипофиза. Физиологическая роль, регуляция секреции.

Гормоны аденогипофиза

Сокращенное название

Полное название

Орган–мишень

Гландотропные гормоны

АКТГ

Адренокортикотропный гормон

(кортикотропин)

Кора надпочечников

ТТГ

Тиреотропный гормон(тиреотропин)

Щитовидная железа

ФСГ

Фолликулостимулирующий гормон

Гонады

ЛГ

Лютеинизирующий гормон

Гонады

(ФСГ и ЛГ

это два гонадотропина)

 

 

Эффекторные гормоны

ГР

Гормон роста (соматотропный гормон)

Все клетки тела

 

Пролактин

Многие клетки тела (молочные железы, гонады)

 

Гландотропные гормоны. Органами–мишенями четырех гормонов аденогипофиза служат эндокринные железы, поэтому их называют гландотропными гормонами. Один их таких органов–мишеней– щитовидная железа, активность которой стимулируется тиреотропным гормоном (ТТГ), называемым также тиреотропином. Аналогичным образом гипофизарный гормон, стимулирующий другую периферическую железу–кору надпочечников, называется адренокортикотропным гормоном или кортикотропином (АКТГ). Два остальных гландотропных гормона повышают активность гонад (ФСГ и ЛГ).

Оба этих гормона, получившие свои названия по функциям, которые выполняют у женщин, имеются и у мужчин. ФСГ играет у мужчин важную роль в созревании спермы, а ЛГ стимулирует синтез тестостерона в интерстициальных клетках Лейдига.

Эффекторные гормоны. действуют на системы органов или даже на весь организм. Один из этих гормонов –гормон роста (ГР), называемый также соматотропным гормоном (СТГ, соматотропин). Второй гормон пролактин.

 

146. Тиреоидные гормоны. Физиологическая роль, регуляция секреции.

Синтез и секреция тиреоидных гормонов. Чтобы происходил синтез тиреоидных гормонов, суточное потребление иода должно составлять около 150 мкг.

 

Система гипоталамус–гипофиз–щитовидная железа. Нейроны гипоталамуса секретируют тиреотропин–рилизинг–гормон (ТРГ), который по воротной системе поступает в гипофиз, и стимулирует секрецию тиреотропного гормона (ТТГ). ТТГ индуцирует в щитовидной железе образование тироксина (Т4) и трииодтиронина (Т3). Действуя по механизму отрицательной обратной связи на гипофиз и, возможно, на гипоталамус, Т3 угнетает секрецию ТТГ. Пока неясно, может ли в физиологических условиях высвобождение гипоталамусом ТРГ стимулировать также секрецию пролактина.

 

Образование, хранение и высвобождение тиреоидных гормонов. Большая часть суточной потребности в иоде покрывается за счет всасывания его в кишечнике в виде ионов. Последние поглощаются из крови клетками щитовидной железы и окисляются пероксидазой до молекулярного иода. В щитовидной железе образуется тиреоглобулин, богатый остатками тирозина, с которыми и взаимодействуют молекулы иода. В результате конденсации двух молекул дииодтирозина, находящихся в составе тиреоглобулина, образуется тироксин, который остается связанным с тиреоглобулином и в таком виде поглощается из коллоида клетками щитовидной железы. В этих клетках тироксин отщепляется под действием ферментов от тиреоглобулина и выделяется в кровоток. На периферии тироксин подвергается деиодированию с образованием трииодтиронина–активного тиреоидного гормона; в самой щитовидной железе образуется лишь очень небольшая часть трииодтиронина. Некоторое количество иода, освобождающегося при деиодировании тироксина, поступает обратно в щитовидную железу, но большая часть его выводится почками.

Функции:

Тиреоидные гормоны стимулируют метаболизм во всем организме.

Трииодтиронин, вероятно, связывается с рецепторами в ядре клетки и воздействует на геном, вызывая усиление транскрипции и трансляции и вследствие этого стимулируя синтез белка во всех клетках тела. Кроме того, тиреоидные гормоны влияют, по–видимому, на выход из клеток Na+ и поступление в них К+, повышают активность ферментов, участвующих в расщеплении углеводов, из–за чего при высоком уровне тиреоидных гормонов особенно возрастает интенсивность метаболизма углеводов.

У детей тиреоидные гормоны способствуют физическому росту. Особенно важен этот эффект для нормального развития мозга в постнатальный период. Пока плод находится в матке, недостаточность щитовидной железы для него не опасна, так как он получает достаточное количество тиреоидных гормонов от матери, но после рождения дефицит собственных тиреоидных гормонов становится фатальным для развития мозга.

 

147. Гормональная регуляция концентрации кальция и фосфора в крови.

Регуляция концентрации кальция и фосфатов. Поддержание гомеостаза кальция и фосфатов необходимо для нормальной жизнедеятельности организма в связи с их важнейшей ролью во многих процессах. Ионы кальция влияют на проницаемость клеточных мембран, активность ряда ферментов, необходимы в процессе оплодотворения, при синаптической передаче, определяют возбудимость нервно—мышечной системы и т. д. Фосфаты входят в состав фосфолипидов, ферментов, нуклеиновых кислот.

В отдельные периоды жизни возникают особенно большие потребности в кальции, например в период развития, при лактации, беременности и т. д. В организме запасы кальция находятся в костях.

В регуляции содержания кальция и фосфатов основная роль принадлежит паратгормону и кальцитонину наряду с витамином Dз.

Паратгормон образуется паращитовидными (околощитовидными) железами, которые обнаружены у всех позвоночных, начиная с амфибий. Это парные образования, тесно прилегающие к дорсальной поверхности щитовидной железы (иногда с каждой стороны расположено по две отдельных железы). Паратгормон представляет собой полипептид с молекулярной массой 8,5 кДа. Он был первым гормоном, выделенным из паращитовидных желез. Как и кальцитонин, он регулирует обмен кальция в организме, но реципрокно тиреоидному гормону. Так, усиление секреции паратиреоидина вызывается гипокальциемией. Основными мишенями гормона в организме млекопитающих являются клетки костной ткани, энтероциты кишки и эпителий проксимальных почечных канальцев. В костной ткани гормон способствует образованию цитратов кальция, вымываемых в кровь. В кишке и почечных канальцах под его действием усиливается всасывание иона и выведение фосфатов.

Костеобразующая функция (пролиферация, дифференцировка остеоцитов, образование костного матрикса) паратгормона опосредуется через синтез факторов роста и усиливается гормональной формой витамина D и эстрадиолом. Снижение секреции последних способствует развитию резорбции костной ткани. Увеличение ионизированного кальция в плазме крови и клеточные эффекты паратгормона на осцилляции Са2+ в нейронах вызывают повышение возбудимости структур нервной системы и, в отличие от кальцитонина, активацию аппетита.

Кальцитонин образуется в С—клетках в щитовидной железе. Кальцитонин, вырабатываемый С—клетками сразу выводится в кровь. Кальцитонин - полипептид с молекулярной массой около 3,6 кДа.

Кальцитонин, помимо С—клеток щитовидной железы, синтезируется также в аорте, аденогипофизе, надпочечниках, и, как модулятор, — в нервной системе. Основная функция гормона — регуляция кальциевого гомеостаза. Гиперкальциемия является наиболее мощным фактором по запуску секреции кальцитонина, снижающим уровень ионизированного кальция в крови.

Поскольку кальций может находиться в плазме в виде водонерастворимых фосфатов и других солей, то и гипокальциемические эффекты кальцитонина связаны с переводом кальция в нерастворимую форму фосфатных солей, переносом и накоплением их в остеобластах и остеоцитах. Кальцитонин увеличивает секрецию Са2+ почками и уменьшает его всасывание в кишке, тогда как в отношении фосфатов гормон оказывает противоположный эффект. Кальцитонин подавляет аппетит и жажду, ограничивая поступление кальция извне.

 

148. Глюкокортикоиды, их значение. Регуляция секреции.

Клетки пучковой зоны секретируют в кровь у здорового человека два основных глюкокортикоида: кортизол и кортикостерон, причем кортизола примерно в 10 раз больше. Секреция глюкокортикоидов регулируется кортикотропином аденогипофиза. Избыток кортизола в крови по механизму обратной связи угнетает секрецию кортиколиберина в гипоталамусе и кортикотропина в гипофизе. Секреция глюкокортикоидов происходит непрерывно с отчетливой суточной ритмикой, повторяющей ритмику секреции кортикотропина: максимальные уровни гормона в крови у человека отмечаются в утренние часы, а минимальные — вечером и ночью (рис. 6.13). Поступающие в кровь гормоны транспортируются к тканям в свободной и связанной (до 95 %) с альфа2-глобулином плазмы (транскортин) формах. Механизм действия глюкокортикоидов на клетки-мишени представлен на рис. 6.14.

Благодаря растворимости в липидах кортизол проникает через мембрану клетки-мишени и взаимодействует с цитоплазматическим рецептором, образуя лиганд-рецепторный комплекс, что обеспечивает транспорт молекулы гормона в ядро, где кортизол связывается с ядерным рецептором, активируя синтез новых белков и ферментов, тем самым обеспечивая метаболические эффекты. Молекула кортизола может образовывать лиганд-рецепторный комплекс и с мембранными рецепторами. Хотя роль этого процесса в реализации эффектов гормона еще изучается, тем не менее известны быстрые негеномные эффекты гормона на возбудимость нервных клеток, связанные с изменением ионного трансмембранного транспорта, обусловливающие изменение поведения.


Дата добавления: 2015-11-14; просмотров: 69 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Лабильность (функциональная подвижность). 5 страница| Лабильность (функциональная подвижность). 7 страница

mybiblioteka.su - 2015-2024 год. (0.026 сек.)