Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Лабораторна робота № 10

Лабораторна робота № 3 | Лабораторна робота №4 | Лабораторна робота № 5 | Лабораторна робота № 6 | Порядок виконання роботи | Лабораторна робота № 7 | Порядок виконяння роботи. | Лабораторна робота № 8 | Вивчення додавання однаково напрямлених коливань. | Порядок виконання роботи |


Читайте также:
  1. II. Контрольна робота.
  2. IV. Лабораторная диагностика псевдотуберкулеза и кишечного иерсиниоза у людей
  3. IV. Робота над навчальною темою
  4. Безпека при вантажно-розвантажувальних роботах
  5. Блок 1: Робота з «передумовами» в процесі оцінки
  6. Виробнича робота
  7. Внутрішня енергія. Робота і теплота, як міри зміни внутрішньої енергії системи. Перший закон термодинаміки.

Вивчення додавання взаємно перпендикулярних коливань однакової частоти.

Прилади і матеріали: 1) електронний осцилограф; 2) два звукові генератори.

 

Теоретичні відомості та опис установки

 

Матеріальна точка бере участь у двох взаємно перпендикулярних коливаннях з частотами і :

; (1)

, (2)

де - початкова різниця фаз між коливаннями.

Щоб знайти траєкторію точки, яка бере одночасно участь у двох взаємно перпендикулярних коливаннях, з рівнянь (1) і (2) виключимо час t. Для цього праві і ліві частини цих рівнянь поділимо відповідно на і . Дістанемо

, (3)

. (4)

З формули (4) випливає, що

. (5)

З урахуванням (3), а також умови

для різних значень n формула (5) набуває вигляду:

а)

; (6)

б)

. (7)

Для непарних цілих чисел, , маємо

(8) Для парних цілих чисел, , маємо

(9)

Рівняння (6) — (9) є рівняннями траєкторій точки, що бере участь одночасно у двох взаємно перпендикулярних коливаннях. Залежно від співвідношення частот складових коливань ці криві набувають тієї чи іншої форми. Їх називають фігурами Ліссажу. Найпростіша форма траєкторій буде при . Справді, перетворимо формулу (6) так:

.

Піднісши обидві частини цієї рівності до квадрата, дістанемо

. (10)

Звідси видно, що траєкторія результуючого руху являє собою еліпс. Отже, якщо точка бере участь у двох взаємно перпендикулярних коливаннях однакової частоти , то в загальному випадку дістанемо рух по еліпсу. Причому орієнтація цього еліпса відносно осей Ох і Оу залежить від різниці фаз складових коливань.

В окремих випадках еліпс може вироджуватись у пряму або коло. Спинимося на розгляді деяких окремих випадків.

1. Нехай . Формула (10) набуває вигляду

, (11)

звідки

.

 

Отже, при різниці фаз, що дорівнює нулю, траєкторія точки є пряма, що проходить через початок координат і утворює з віссю кут, тангенс якого дорівнює .

2. При різниці фаз рівняння траєкторії має такий вигляд:

.

Звідси або .

Отже, знову маємо траєкторію, яка являє собою пряму, нахилену до осі Ох, але вже під кутом, більшим від .

3. При різниці фаз складових коливань або рівняння траєкторії має вигляд

.

Рис. 2

В розглядуваному випадку точка рухається по еліпсу, осі якого збігаються з осями координат. Якщо , то рівняння траєкторії буде рівнянням кола з радіусом, що дорівнює А, тобто . При криві матимуть складнішу форму. Фігури Ліссажу наведено на рис. 1. При вивченні додавання двох взаємно перпендикулярних коливань за загальним виглядом фігур Ліссажу можна визначити частоту одного складового гармонічного коливання, якщо відома частота іншого.

Установка складається з двох звукових генераторів та електронного осцилографа (рис. 2). На вхід «X» блока горизонтально відхиляючих (вертикально розташованих) пластин осцилографа подають від одного генератора синусоїдну напругу відомої частоти . Від другого генератора на вхід «Y» блока вертикально відхиляючих пластин подають синусоїдну напругу невідомої частоти . Залежно від співвідношення цих частот

(12)

і зсуву фаз обох складових коливань на екрані осцилографа утворюється та чи інша фігура Ліссажу.

 

Порядок виконання роботи

1. Скласти установку за схемою (рис. 2).

2. Вимкнути генератор розгортки осцилографа. Для цього потрібно ручку «Диапазон частот», що розташована на передній панелі осцилографа, поставити в положення «Вьікл.».

3. Поставивши ручки «Усиление по оси X» та «Усиление по оси У» в нульові положення, добиваються мінімального підсилення змінної напруги, що подається від генераторів на пластини електронно-променевої трубки осцилографа. Ручку звукового генератора «Амплитуда» встановлюють на поділці «0».

4. По шкалах правого звукового генератора встановлюють частоту (значення цієї частоти задає керівник занять).

5. Увімкнути електронний осцилограф і генератори та дати їм прогрітись протягом 2. — 3 хв. Світлову пляму виводять на середину екрана осцилографа і фокусують.

6. За допомогою ручки осцилографа «Усиленне по оси X» добиваються тонкої горизонтальної смуги на екрані. Довжина смуги має дорівнювати приблизно половині діаметра екрана.

7. Обертанням ручки звукового генератора «Амплитуда» добитись появи на екрані осцилографа фігури Ліссажу. Встановити її симетрично відносно координатних осей.

8. На міліметровий папір змалювати з екрана осцилографа одержану фігуру Ліссажу і координатну сітку.

9. Підрахувати кількість точок перетину фігури Ліссажу з віссю Ох та з віссю Оу ().

Якщо вісь координат проходить через точку перетину віток кривої, її рахують двічі. Така точка відповідає кратним кореням рівняння траєкторії.

10. Для знаходження частоти досліджуваного гармонічного коливання рівняння (12) запишемо у вигляді

. (12а)

Знайдену кількість точок і підставити в це рівняння і обчислити шукану частоту.

Зафіксувати поділку шкали правого звукового генератора, якій відповідає здобуте значення .

11. Змінюючи частоту звукового генератора, добитись стійкого зображення нової фігури Ліссажу і знайти . Зафіксувати поділку шкали. Вимірювання провести для кількох фігур Ліссажу, наведених на рис. 74. Проти поділок на лімбі генератора досліджуваних коливань поставити відповідні значення частот.

12. За формою фігур Ліссажу, наведених на рис. 74, і відношенням частот складових коливань знайти різницю фаз цих коливань.

 

? Контрольні запитання

1. Що називають фігурами Ліссажу?

2. Які фігури утворюються при накладанні двох взаємно перпендикулярних коливань з однаковими частотами?

3. Чому одному і тому самому відношенню частот відповідає ряд фігур?


Дата добавления: 2015-11-14; просмотров: 38 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Порядок виконання роботи| Лабораторна робота 11

mybiblioteka.su - 2015-2025 год. (0.01 сек.)