Читайте также: |
|
189,0 | 252,0 | 336,0 | 448,0 | 597,3 | 796,4 | |
94,50 | 126,0 | 168,0 | 224,0 | 298,2 | 398,2 | 531,0 |
47,25 | 63,00 | 84,00 | 112,0 | 149,3 | 199,1 | 265,5 |
23,62 | 31,50 | 42,00 | 56,00 | 74,67 | 99,55 | 132,7 |
11,81 | 15,75 | 21,00 | 28,00 | 37,33 | 49,78 | 66,37 |
5,906 | 7,875 | 10,50 | 14,00 | 18,67 | 24,89 | 33,18 |
2,953 | 3,937 | 5,250 | 7,000 | 9,333 | 12,44 | 16,59 |
В матрице 9 основные моды короткопериодических пульсаций 84,00 мин., 56,00 мин., 37,33 мин. располагаются по диагонали слева направо сверху вниз. (У В. Маркова основная мода расположена на горизонтали 78,00 мин., 52,00 мин., 34,67 мин.) Из матрицы 9 следует наличие еще одного полуцикла Т3 с отношением:
Т3/Т1 = 1/3,
о котором есть упоминание в [ 51 ]. И полный цикл, завершающий процесс:
Т2 + Т 3 = Т1,
есть не что иное, как элемент матричной вязи, определенный последовательностью расположения чисел на числовом поле: сумма двух последовательных вертикальных чисел равна третьему числу, расположенному по диагонали справа налево от верхнего из них.
Можно констатировать, что временные взаимосвязи физических параметров отображены в поперечных слоях русской матрицы.
Пульсация Земли и изменение веса тел
Гравитационная линза
6.6. О возможности планетарных излучений
Русская механика, в отличие от остальных механик, описывает природу как структурированное образование, в котором взаимосвязи всех тел и на уровне Вселенной, и на уровне макромира, и на уровне микромира строго синхронизованы (например, как синхронизованы взаимосвязи внутренних органов человеческого тела). Каждое тело занимает то положение в пространстве, которое обусловлено его параметрами и энергетическим потенциалом. Случайное (не связанное с его энергетическими возможностями) нахождение тел в том или другом месте, например Солнечной системы, исключается. Если в классической механике на любых орбитах вокруг Солнца могут находиться планеты любого размера и массы (конечно, имеющие массу на порядки меньше его), то в русской механике все тела на орбитах имеют строго пропорциональную структуру, и знание количественной величины одного параметра всех планет (например, радиуса) и массы одной планеты (например, Земли) достаточно для нахождения масс остальных планет по инварианту Rm2. Покажу это на примере Юпитера (Rю = 7,13·109 см) и Солнца (Rc = 6,97·1010 см). Находим инвариант по радиусу R3 и массе М3 Земли:
RM2 = 2,28·1064. (6.24)
Решаем инвариант относительно масс Солнца и Юпитера:
Мс = Ö(2,28 ·1064/6,96·1010) = 5,73·1026,
Mю = Ö(2,28·10б4/7,13·109) = 1,79·1027.
Масса Солнца, полученная по инварианту (6.24) равна Мс = 5,73·1026 г, а Юпитера Мю = 1,79·1027 г. И именно такие параметры имеют данные планеты в таблице 21, столбец 6.
Посмотрим, а наблюдаются ли закономерности в отношениях радиусов планет и спутников к радиусам своих орбит. То есть, верно ли предположение классической механики о случайных размерах планет и их орбит. Рассчитаем эти пропорции, и результат по планетам занесем в таблицу 26 столбец 6, по спутникам планеты Юпитера ¾ в таблицу 27, планет Сатурна, Урана и Нептуна в таблицу 30:
Таблица 30
Спутники | R, км | l, тыс. км. | R/l | № орбиты |
Сатурна | ||||
Янус | 0,9434·10-3 | |||
Мимас | 1,450·10-3 | |||
Энцелад | 1,260·10-3 | |||
Тефия | 1,695·10-3 | |||
Диона | 1,273·10-3 | |||
Рея | 1,233·10-3 | |||
Титан | 1,997·10-4 | |||
Геперион | 1,483·10-4 | |||
Япет | 1,545·10-4 | |||
Феба | 9,266·10-4 | |||
Урана | ||||
Миранда | 0,9231·10-3 | |||
Ариель | 1,823·10-3 | |||
Умбриэль | 9,363·10-3 | |||
Титания | 1,141·10-3 | |||
Оберон | 7,679·10-4 | |||
Нептуна | ||||
Тритон | 5,352·10-3 | |||
Нереида | 2,157·10-5 |
Прежде всего отмечу, что приведенное расстояние (промежутки между нумерованными орбитами) у каждой из планет, как и у спутников, — свои. Но у Юпитера они ограничивается 26 потенциальными орбитами, у Сатурна и Нептуна ¾ 23 и у Урана ¾ 15 орбитами (определенных по объемному коэффициенту). Если по величине этой пропорции рассматривать планеты (таблица 26 столбец 6), то у них не отмечается никаких резких переходов от одной орбиты к другой. Разница в отношениях радиусов крайних планет к радиусам своих орбит находится в пределах порядка.
При анализе же планетарных систем в отношениях радиусов спутников к радиусам орбит у всех трех планет ¾ Юпитера, Сатурна и Нептуна, имеющих по 23 потенциальной орбиты, явно имеется скачок на два порядка в системах Сатурна и Нептуна и на три порядка в системе Юпитера. Скачок показывает, что
• размеры спутников в планетарных системах (а следовательно, и в Солнечной системе и в атомных — электроны) не могут быть случайной величиной, а уменьшаются с удалением от центрального тела;
• изменение размеров происходит не монотонно, а
скачкообразно;
• скачкообразное изменение обусловлено, скорее всего,
качественными изменениями структуры пространства
— следствие изменения плотности эфира и скоростями
их движения.
Следовательно, на каждой планетарной орбите Солнечной системы могут находиться только такие тела, собственные параметры которых соразмерны той области вещественной плотности пространства, в которой они вращаются.
Современная небесная механика не прогнозирует для Земли возможность каких бы то ни было космических потрясений планетарного масштаба. И не потому, что они невозможны или не встречаются в космосе, а потому, что классическая механика не предсказывает в движении планет ни одного фактора, способного хоть каким-то образом отразиться на вечном вращении планет вокруг Солнца. Попробую показать, что такие факторы наличествуют в космосе.
Еще раз вернемся к постоянной тонкой структуры a и отметим, что она находится из отношения скорости света с к скорости электрона на боровской орбите v6: a = c/v6 (что сразу же определяет возможность существования в этой области, конечно если плотность ее изотропна, промежутка скоростей от скорости электрона до скорости света, или, если скорости определяются плотностью движущихся тел, двух полевых скоростей — скорости трехмерного электрона и скорости четырехмерного фотона). То, что при определении a фигурируют скорости двух тел, вовсе не означает, что мы имеем дело только со скоростями, так же как и отношение массы протона тр к массе электрона те: a' = тр/те — вовсе не ограничивается пропорциональностью масс на безразмерный коэффициент 1836. Оба эти безразмерные коэффициенты a и a' могут представлять преобразование параметров собственного движения фотона и электрона в первом случае и пульсации электрона и протона во втором. Как было показано ранее, отношение mр /wр одного тела равно отношению mе/we другого и, следовательно, могут существовать некоторые комбинации типа mр /те ≈ wр /wе ≈ 1836.
Их-то, скорее всего, и отображает соотношение масс.
Поскольку аналогами движения электронов в макромире выступают планеты (или спутники планет) и их орбитальные скорости, то аналогами: скорости света становится планетарная скорость электромагнитных волн v2 (равная для Земли v2 = 4,562·108 см/с), а электронной — скорость vгp вращения гравитационного поля у поверхности планет (vгр = 7,91·105 см/с). В таблице 26 столбец 5 вычислено отношение этих скоростей для всех планет. Как было показано выше, данное отношение a, для Земли равно:
aз = vз /v1 = 576,0 (6.25)
или примерно 4 pa /3. Где a = 137,5, свидетельствующее, по-видимому, о том, что существуют сквозные коэффициенты, приблизительно одинаковые как для микромира, так и макромира. Это настолько необычно, что требует более подробного объяснения. Попробуем с этим разобраться. Коэффициент 4 p /3, как показано во втором разделе, есть отображение объемности, так же как коэффициент p - плоскостное отображение. Постоянная тонкой структуры a ~ 137 — скорее всего, нижний предел трехмерности пространства. Верхний, можно полагать, a' ~ 1836 = тр/те. Тогда a' может оказаться нижним пределом четырехмерного пространства. Не означает ли некоторое превышение aз над a в (6.25) наличия во внутренней структуре Земли некоего образования, приближающегося по своей плотности к пространству четырехмерному, и только определенная совокупность этих пространств отражается как aз.
Вообще из анализа столбца 5 табл. 26 трудно сделать какой-либо вывод о плотностных характеристиках пространства тел планет. Но если принимать во внимание значения а и а', то сразу же a видно, что плотность Меркурия находится за пределами четырехмерной плотности и поэтому между Меркурием и Венерой может находиться сфера перехода от одной мерности к другой (сфера, которая может ускорять распад комет). Эта сфера расположена между 20-й и 23-й потенциальными орбитами Солнечной системы. И, как следует из таблиц 27, 30, именно в этой области, между теми же потенциальными орбитами в спутниковых системах четко фиксируется скачок в изменении размеров спутников планет. Если это даже просто совпадение, то оно настораживает.
Похоже, что другая аналогичная граница плотности находится между орбитами Марса и Юпитера. Нельзя исключить, что именно эту границу «высвечивает» пояс астероидов. К тому же переход кометами данных границ, видимо, сопровождается приборно наблюдаемых незначительным парным изменением траектории их движения (на входе и выходе).
То, что планеты за Марсом по своим плотностным характеристикам резко отличаются от первой четверки планет, было замечено еще в прошлом веке. Если же судить по табл. 26, то три планеты из четырех (Юпитер, Сатурн и Нептун), похоже, находятся за пределами трехмерной плотности. И только Уран миновал эту границу. Не потому ли его структура и наклонение так отличаются от соответствующих параметров других планет. Иные «необычности» наблюдаются и в структуре Марса и в структуре Меркурия, и потому следует поинтересоваться, а не скрываются ли за их коэффициентами плотности постоянные величины?
Рассмотрим, например, коэффициент плотности Меркурия aм = 2494. Если его разделить на a' = 1836, то получим с точностью до 2% коэффициент объемности 4/3:
aм/a' = 1,358... ≈ 4/3.
Если же учесть, что и радиус Меркурия в различных источниках приводится с точностью около 1% [ 22,41,42,110 ], то это достаточно удивительное совпадение, подтверждающее существование плотностной границы между Меркурием и Венерой. Да и плотностной коэффициент Марса aм = 1754,5 не. «дотягивает» до четырехмерности чуть больше 5%, тоже достаточно близкая к критической величина.
Наконец, Венера. Если плотностной коэффициент Венеры разделить на a, то получим
644,4/137 = 3 p /2.
Что это? Случайные совпадения, обусловливающие получение плотностных результатов вблизи трех или четырехмерности для ближайших к Солнцу планет? Ошибки вычислений или некорректный подход к постановке задачи? А может, состояние всех их находится на критическом уровне, и любые космические гравитационные дислокации могут повлечь за собой нарушение плотностного коэффициента планеты (планет?) с неизбежным изменением ее орбиты?
Существует ли возможность образования каких либо
гравитационных дислокаций, например, на планетах или Солнце. Удивительно, но так научными кругами вопрос, похоже, еще не ставится. Тем не менее, на планете Земля произошло в XX веке, по меньшей мере, два необъяснимых явления, которые могут оказаться следствиями очень слабых гравитационных дислокаций. Я имею в виду Тунгусский феномен и «взрыв» в 1991 г. в районе г. Сасово Рязанской области. Оба явления имеют сходный характер и не получили на сегодня научного объяснения. В книге [ 25 ] показано, что наиболее полное объяснение этим явлениям дает предположение о возникновении в глубинах Земли гравитационных дислокаций, порождающих неоднородные планете плотностные включения которые обладают мощным магнитным полем и антигравитацией. Эти образования были названы эфирогравиболидами (гравиболидами). Их «выдавли-вание» из глубин наружу сопровождается катастрофическими явлениями, мощность которых определяется энергией гравиболида. Вырвавшись из глубин, имея четырехмерную плотность и пролетев некоторое расстояние над поверхностью (Тунгусский эфирогравиболид вылетел на поверхность и пролетел примерно за час около 1500 км.), они вылетают в космос и по характеру своего движения весьма напоминают фотоны микромира.
Если вспомнить, что Тунгусский эфирогравиболид, вышедший из глубин в районе Горного Алтая (координаты кратера – 49,43N, 87,01E) и взорвавшийся в Тунгусской тайге севернее Вановары, имел массу в районе 1018 –1020 г., а радиус около ~50 м, и его взрыв сопровождался катастрофическими разрушениями в очень локальном регионе (энергия взрыва Тунгусского эфирогравиболида определяется в 1022 эрг.), то разрушительную мощь выхода эфирогравиболида массой на 3-4 порядков больше чем Тунгусский просто невозможно вообразить. Катастрофа охватит все районы Земли. О последствиях таких катастроф свидетельствует вся геологическая история Земли.
Если плотность планеты, например Земли, будет нарастать за счет нарастания в ее глубинах эфирогравиболидов, она будет медленно отодвигаться от Солнца. Если же произойдет нарушение плотностного «режима» (локальное изменение гравитационной структуры), то следствием может оказаться «выброс» эфирогравиболидов одной или несколькими планетами с последующим перемещением на некоторую орбиту ближе к Солнцу. (Нечто подобное, связанное с перемещением Венеры, Земли и Марса от Солнца на орбиты, удаленные от первоначальных на 2-3 млн км, зашифровано расположением пирамид Хуфу, Хафра, Менкаура на плато Гизе в Египте [ 110 ]).
Можно полагать, что эфирогравиболиды являются в макромире аналогом квантов действия (фотонов) микромира. И испускание их планетами, также как и фотонов электронами, приводит к перемещению планет с одной орбиты на другую ближе к Солнцу (ядру). Поскольку основные уравнения квантовых переходов в микромире известны и они аналогичны для макромира, попробуем, используя (5.24), качественно определить, какие изменения можно ожидать, например, на планете Земля при перемещении ее с одной орбиты на другую. Нам неизвестно, на какую именно орбиту она может переместиться (естественно, что неизвестно и время начала перемещения и состоится ли оно вообще в обозримый период времени. Но не это главное. Главное, что такое перемещение, в принципе, не исключено, и его последствия можно вычислить), а для примера можно выбрать орбиту по своему желанию.
Предположим, что в результате выброса эфирогравиболида большой энергии Земля «переместилась» со своей орбиты на орбиту, близкую к орбите Венеры. Нас сейчас не интересует, что будет в этом случае с Венерой (можно условно принять, что она не будет мешать новому расположению Земли), сколько времени Земля будет «перебираться» на другую орбиту или какие процессы будут происходить на ней. Мы просто полагаем, что планета изменила радиус своей орбиты с l1 = 1,496·1013 см на другой с радиусом l2 = 1,12·1013 см. То есть оказалась на 25% расстояния ближе к Солнцу, чем сейчас. Определим по (5.24), какую длину волны имел эфирогравиболид, вышедший из Земли и покинувший Солнечную систему:
l12 = 4 pal1l2 / (l1 – l2) = 7,64·1016 см.
Эта очень большая длина волны полученная, вероятно, для области покидания эфирогравиболидом глобулы Земли нам ни о чем не говорит и приборно не будет зафиксирована. Но ее теоретическое получение свидетельствует о реальной возможности перехода планет с орбиты на орбиту и, следовательно, о том, что с изменением орбиты все параметры планет тоже должны меняться. К тому же знание длины волны «выброшенного» тела и энергии, которую можно рассчитать еще недостаточно для расчета тех колоссальных изменений, которыми будет сопровождаться «выброс». Однако их можно найти косвенным путем на качественном уровне исходя из предполагаемого расстояния между старой и новой орбитами планеты.
Сначала по инварианту определим, какой радиус Rn будет иметь Земля на новой орбите:
Rn = R3l2 /l1 = 4,775·108 см.
Радиус Земли Rn уменьшился на 1600 км, что составляет четверть существующего радиуса. Масса же Земли на новой орбите Мn согласно инварианту возрастет:
A= RM2 = 2,28·1064.
Отсюда
Мn = ÖA/Rn = 6,911·1027 г.
на 15,5% или на 9,312 1026 г больше, чем ее настоящая масса.
Возможно, что эти 15,5% и есть интегрированная величина «разуплотнения» тела планеты, которым сопровождается выход из глубин Земли одного или нескольких эфирогравиболидов. Похоже, что именно такой величины и окажется их масса. Но продолжаю.
Плотность Земли возрастет почти в три раза и составит 15,15 г/см3. Напряженность гравиполя gn на поверхности Земли тоже возрастет и окажется равной:
B = R2g = 3,99·1020.
gn = B/Rn2 = 1750
То есть почти в 2 раза превысит существующий и т.д. Но главное не в этом изменении условий существования жизни на Земле. Они, эти изменения, будут потом. Главное случится в самый момент выхода эфирогравиболида и ускоренного движения Земли к новой орбите. Поскольку конфигурация планеты не идеальная сфера, а внутренняя структура не однородна, то выход эфирогравиболида указанной массы будет сопровождаться катастрофическими изменениями структуры и поверхности Земли от потопов, землетрясений, исчезновения и возникновения островов и материков до возможного переворота полюсов.
Движение небесных тел-планет в космическом пространстве оказывается не столь «безоблачным» как это следует из современной небесной механики и подвержено скачкообразным изменениям своего состояния в достаточно значительных пределах. В таких, которые угрожают гибелью всей развивающейся на Земле цивилизации. И хотя физика порождения эфирогравиболида и его выхода из глубин Земли представляется еще достаточно смутно, сомнения в существовании аналогичных процессов в природе уже улетучились. Последним подтверждением возможности таких природных процессов был «выброс» очень небольшого эфирогравиболида (с радиусом, вероятно, около 0,5 м) в окрестностях г. Сасово Рязанской области 12 апреля 1991 года.
Таким образом, построение квантовой и электрической моделей Солнечной системы, с одной стороны, отрицает корректность законов квантовой механики, а с другой, способствует получению новых знаний о структуре Солнечной системы и тех особенностей, которые присущи планетарным и звездным образованиям.
7. Некоторые особенности понимания
взаимодействия вещественных структур
Теперь, имея некоторое представление о квантовом строении Солнечной системы, вернемся к гравитационным эффектам и к описанию определяемой гравиполем структуры окружающего нас пространства. Из анализа строения Солнечной системы следует вывод о существовании в ней двух полей: электрического и гравитационного. Существование магнитного поля как особого вида полевого взаимодействия вызывает сомнение. Скорее всего, магнитное поле на уровне микромира является аналогом гравитационного поля на уровне макромира. Поэтому ниже будет рассматриваться только электромагнитное и гравитационные поля, механизм взаимодействия которых на сегодня еще не выяснен (более того, еще не найдены точки возможного соприкосновения этих полей). Однако рассмотрение тел Солнечной системы показало, что существование электрических сил обусловлено поверхностными слоями тел. И поверхность нашей Земли, как и поверхности других космических тел, обладают зарядовым свойством. Можно предположить, что самопульсация атомов и молекул приповерхностных слоев создает эффект электрического заряда определенного знака. А поскольку такой «заряд» есть следствие интегрирования «зарядов» всех молекул и атомов определенной области, то он обладает, по-видимому, новым качеством ¾ не притягивает тела близких к молекулам размеров (вероятно, оказываются несопоставимыми фазы самопульсации макро- и микротел). И атомы и молекулы таких тел оказываются «заряженными» не электрически, а гравитационно на притяжение друг к другу. Вспомним еще раз, что притяжение есть следствие самопульсации тел, которая обусловливает как возможность гравитационного притяжения, так и возможность такого же отталкивания.
7.1. Особенности плотностного
строения вещественного пространства
Выступая в телепередаче 26 мая 1998 г., академик
Е. Велихов вынужден был публично констатировать,
что «эфир в природе все-таки существует». Эта вынужденная констатация факта существования эфира, который почти век был предан анафеме ортодоксальной наукой с преследованием инакомыслящих, еще не является признанием его вещественности, но может считаться первой попыткой подхода к такому признанию. Первой, поскольку ортодоксы еще не осознали, что наличие вещественного эфира не заполняющего, как предполагается ими, а образующего пространство (включая космическое), качественно изменяет систему физического мышления, а вместе с ним отрицает современную постулативно -понятийную методологию и математическую формализацию описания природных явлений. Необходимость же изменения физического мышления вряд ли обрадует ортодоксов, не готовых и не способных совершить такое деяние. Отмечу, что существующее физическое мышление принимается сегодня как эталон не только научного мышления, но и как общий показатель разумности цивилизации, движущий фактор её успехов и достежений. Изменение методологии мышления ¾ это не революция в науке, это отрицание ее парадигмы, создание иного понятийного базиса физических представлений, в результате которого от нынешней физики останутся переосмысленные эксперименты и физика, как часть естествознания, избавится от разграничения по категориям и разделения на самостоятельные разделы, становясь единой системной наукой.
Разделение категорий (пространство, время, вещество, поле,...) на самостоятельные, обособленные понятия является основой раздробления физики на отграниченные, отдельные дисциплины вроде механики, термодинамики, квантовой механики и т.д. И оно начинается с определением понятий «тело» и «пространство». Именно телесное пространство составляет базис всей физики. Пространство-базис, который на сегодня представляется самостоятельным, бестелесным, бескачественным, не структуризованным и самодостаточным вместилищем всех тел. Категорией, равнозначной категориям «материя» и «время» и не зависящей от них.
Интегрировать обособленные категории сейчас намного сложнее, чем было разъединять. Ибо в результате разъединения оказались «порваны» в теории взаимосвязи свойств, а сами свойства, например, такие, как время, пространство и т.д., приобретя функции субстанции, «скрыли» и «перепутали» взаимосвязи с другими свойствами. К тому же физические теории формировались не на основе гносеологических принципов, а посредством введения самостоятельных не связанных между собой аксиом и запретительных постулатов, ограничивающих жесткими рамками возможности описания природных процессов. В результате приходится рассматривать структуру вещественного пространства как бы с «грязного листа», не имея, как и во времена И. Ньютона, представления о его вещественности. И это обстоятельство делает невозможным адекватное описание строения пространства, оставляя место для предположений и достаточно схематичных версий. Ниже в полуинтуитивной качественной форме излагается возможная версия строения эфирного пространства.
Начнем с того, что пространство вещественно и не однородно, а образуется телами различной плотности (это заметно и на поверхности Земли, где каждое тело образует свое пространство), создающими повсеместно «кучности» вещественной плотности определенного ранга или мерности. Плотностные мерности, роль которых в настоящее время выполняют n -мерные пространства, составляются своего рода атомами одной эфирной плотности (назовем их псевдоатомами). Так, псевдоатомы эфира, образующие космическое пространство Солнечной системы, являясь аналогами наших атомов и молекул трехмерной плотности, имеют четырехмерную плотность, а их радиус у поверхности Земли около 1 см. Радиус псевдоядра эфирных псевдомолекул, как уже говорилось, находится в пределах 10-17-10-20 см, и они имеют пятимерную плотность. Надо полагать, что внутри ядра находится керн шестимерной плотности.
Таким образом, эфир не является тонкодисперсным газом, а образует своими псевдомолекулами на четвертом плотностном уровне жесткую взаимосвязанную конструкцию, обусловливаю-щую возможность существования в ней продольных и поперечных волн. Волн пульсации псевдомолекул, или принудительных волн от различных источников, передающихся от точки к точке пространства четырехмерной плотности, где «точками» предполагаются псевдоатомы (не точечные объекты). Полевое взаимодействия между космическими псевдоатомами происходит через межатомные нейтральные зоны и в пространстве этих четырехплотностных псевдоатомов отсутствуют трехплотностные образования.
Дата добавления: 2015-07-11; просмотров: 66 | Нарушение авторских прав