Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Окружность. В окружности (x – a)2 + (y – b)2 = R2 центр имеет координаты (a; b).



Читайте также:
  1. Исследование эллипса по каноническому уравнению. Эллипса и окружность. Эксцентриситет эллипса.
  2. Окружность
  3. Окружность
  4. Окружность
  5. Окружность головы
  6. Окружность колеса

В окружности (x – a)2 + (y – b)2 = R2 центр имеет координаты (a; b).

 

Пример. Найти координаты центра и радиус окружности, если ее уравнение задано в виде:

2x2 + 2y2 – 8x + 5y – 4 = 0.

 

Для нахождения координат центра и радиуса окружности данное уравнение необходимо привести к виду, указанному выше в п.9. Для этого выделим полные квадраты:

x2 + y2 – 4x + 2,5y – 2 = 0

x2 – 4x + 4 –4 + y2 + 2,5y + 25/16 – 25/16 – 2 = 0

(x – 2)2 + (y + 5/4)2 – 25/16 – 6 = 0

(x – 2)2 + (y + 5/4)2 = 121/16

Отсюда находим О(2; -5/4); R = 11/4.

Эллипс

Определение. Эллипсом называется кривая, заданная уравнением

.

Определение. Фокусами называются такие две точки, сумма расстояний от которых до любой точки эллипса есть постоянная величина.

 

у

М

 

 

F1 O F2 х

 

 

 

F1, F2 – фокусы. F1 = (c; 0); F2(-c; 0)

с – половина расстояния между фокусами;

a – большая полуось;

b – малая полуось.

 

Теорема. Фокусное расстояние и полуоси эллипса связаны соотношением:

a2 = b2 + c2.

Определение. Форма эллипса определяется характеристикой, которая является отношением фокусного расстояния к большей оси и называется эксцентриситетом.

= с/a.

Т.к. с < a, то < 1.

Определение. Величина k = b/a называется коэффициентом сжатия эллипса.

 

Коэффициент сжатия и эксцентриситет связаны соотношением: k2 = 1 – 2.

 

Если a = b (c = 0, = 0, фокусы сливаются), то эллипс превращается в окружность.

Если для точки М(х1, у1) выполняется условие: , то она находится внутри эллипса, а если , то точка находится вне эллипса.

 


Дата добавления: 2015-07-11; просмотров: 75 | Нарушение авторских прав






mybiblioteka.su - 2015-2025 год. (0.008 сек.)