Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Ее технологические и социальные последствия

Читайте также:
  1. IX.8. Социальные и этические проблемы научно-технического прогресса
  2. OLAP-технология и хранилище данных (ХД). Отличия ХД от базы данных. Классификация ХД. Технологические решения ХД. Программное обеспечение для разработки ХД.
  3. Борьба с последствиями;
  4. Брестская уния и ее последствия. Раскол в Русской православной церкви.
  5. Важнейшие социальные науки
  6. Виды кровотечений и их последствия
  7. Виды риска по его возможным последствиям

 

Научно-техническая революция (НТР) – понятие, используемое для обозначения тех качественных преобразований, которые произошли в науке и технике во второй половине ХХ века. Начало НТР относится к середине 40-х гг. ХХв. В ходе ее завершается процесс превращения науки в непосредственную производительную силу. НТР изменяет условия, характер и содержание труда, структуру производительных сил, общественное разделение труда, отраслевую и профессиональную структуру общества, ведёт к быстрому росту производительности труда, оказывает воздействие на все стороны жизни общества, включая культуру, быт, психологию людей, взаимоотношение общества с природой.

Научно-техническая революция— длительный процесс, который имеет две главные предпосылки — научно-техническую и социальную. Важнейшую роль в подготовке НТР сыграли успехи естествознания в конце XIX – в начале ХХвв., в результате которых произошёл коренной переворот во взглядах на материю и сложилась новая картина мира. Были открыты: электрон, явление радиоактивности, рентгеновские лучи, создана теория относительности и квантовая теория. Совершился прорыв науки в область микромира и больших скоростей.

Революционный сдвиг произошёл и в технике, в первую очередь под влиянием применения электричества в промышленности и на транспорте. Было изобретено радио, получившее широкое распространение. Родилась авиация. В 40-х гг. наука решила проблему расщепления атомного ядра. Человечество овладело атомной энергией. Важнейшее значение имело возникновение кибернетики. Исследования по созданию атомных реакторов и атомной бомбы впервые заставили капиталистические государства организовать в рамках крупного национального научно-технического проекта взаимодействие науки и промышленностисти. Это послужило школой для осуществления общенациональных научно-технических исследовательских программ.

Начался резкий рост ассигнований на науку, числа исследовательских учреждений.[395] Научная деятельность стала массовой профессией. Во II-й половине 50-х гг. под влиянием успехов СССР в изучении космоса и советского опыта организации и планирования науки в большинстве стран началось создание общегосударственных органов планирования и управления научной деятельностью. Усилились непосредственные связи между научными и техническими разработками, ускорилось использование научных достижений в производстве. В 50-х гг. создаются и получают широкое применение в научных исследованиях, производстве, а затем и управлении электронно-вычислительные машины (ЭВМ), ставшие символом НТР. Их появление знаменует начало постепенной передачи машине выполнения элементарных логических функций человека. Развитие информатики, вычислительной техники, микропроцессоров и робототехники создало условия для перехода к комплексной автоматизации производства и управления. ЭВМ — принципиально новый вид техники, изменяющий положение человека в процессе производства.

На современном этапе своего развития научно-техническая революция характеризуется следующими основными чертами.

1)..Превращением науки в непосредственную производительную силу в результате слияния воедино переворота в науке, технике и производстве, усиления взаимодействия между ними и сокращения сроков от рождения новой научной идеи до её производственного воплощения.[396]

2). Новым этапом общественного разделения труда, связанным с превращением науки в ведущую сферу развития общества.

3).Качественным преобразованием всех элементов производительных сил — предмета труда, орудий производства и самого работника; возрастающей интенсификацией всего процесса производства благодаря его научной организации и рационализации, постоянному обновлению технологии, сбережению энергии, снижению материалоёмкости, капиталоёмкости и трудоёмкости продукции. Приобретаемое обществом новое знание позволяет сократить затраты на сырьё, оборудование и рабочую силу, многократно окупая расходы на научные исследования и технические разработки.

4) Изменением характера и содержания труда, возрастанием в нём роли творческих элементов; превращением процесса производства из простого процесса труда в научный процесс.

5). Возникновением на этой основе материально-технических предпосылок сокращения ручного труда и замены его механизированным. В дальнейшем происходит автоматизация производства на основе применения электронно-вычислительной техники.

6). Созданием новых источников энергии и искусственных материалов с заранее заданными свойствами.

7). Огромным повышением социального и экономического значения информационной деятельности, гигантским развитием средств массовойкоммуникации.

8). Ростом уровня общего и специального образования и культуры населения.

9). Увеличением свободного времени.

10). Возрастанием взаимодействия наук, комплексного исследования сложных проблем, роли социальных наук.

11). Резким ускорением всех общественных процессов, дальнейшей интернационализацией всей человеческой деятельности в масштабе планеты, возникновением так называемых глобальных проблем.

Наряду с основными чертами НТР можно выделить определенные этапы ее развития и главные научно-технические и технологические направления, характерные для этих этапов.

Достижения в области атомной физики (осуществление цепной ядерной реакции, открывшей путь к созданию атомного оружия), успехи молекулярной биологии (выразившиеся в раскрытии генетической роли нуклеиновых кислот, расшифровке молекулы ДНК и последующего ее биосинтеза), а также появление кибернетики (установившей определенную аналогию между живыми организмами и некоторыми техническими устройствами, являющимися преобразователями информации) дали старт научно-технической революции и определили главные естественнонаучные направления ее первого этапа. Этот этап, начавшийся в 40-х – 50-х годах ХХ века, продолжался почти до конца 70-х годов. Основными техническими направлениями первого этапа НТР явились атомная энергетика, электронно-вычислительная техника (ставшая технической базой кибернетики) и ракетно-космическая техника.

С конца 70-х годов ХХ столетия начался второй этап НТР, продолжающийся до сих пор. Важнейшей характеристикой данного этапа НТР стали новейшие технологии, которых не было в середине ХХ века (в силу чего второй этап НТР получил даже наименование «научно-технологической революции»). К таким новейшим технологиям относятся гибкие автоматизированные производства, лазерная технология, биотехнологии и др. Вместе с тем новый этап НТР не только не отбросил многие традиционные технологии, но позволил существенно повысить их эффективность. Например, гибкие автоматизированные производственные системы для обработки предмета труда по-прежнему используют традиционные резание и сварку, а применение новых конструкционных материалов (керамики, пластмасс) позволило существенно улучшить характеристики давно известного двигателя внутреннего сгорания. «Поднимая известные пределы многих традиционных технологий, современный этап научно-технического прогресса доводит их, как представляется сегодня, до «абсолютного» исчерпания заложенных в них возможностей и тем самым готовит предпосылки для еще более решительного переворота в развитии производительных сил».[397]

Суть второго этапа НТР, определяемого как «научно-технологическая революция»,заключается в объективно закономерном переходе от различного рода внешних, по преимуществу механических, воздействий на предметы труда к высокотехнологичным (субмикронным) воздействиям на уровне микроструктуры как неживой, так и живой материи. Поэтому не случайна та роль, которую приобрели на этом этапе НТР генная инженерия и нанотехнология.

За последние десятилетия существенно расширился диапазон исследований в области генной инженерии: от получения новых микроорганизмов с заранее заданными свойствами и до клонирования высших животных (а в возможной перспективе – и самого человека). Конец ХХ столетия ознаменовался небывалыми успехами в расшифровке генетической основы человека. В 1990г. стартовал международный проект «Геном человека», ставящий целью получение полного генетической карты Homo sapiens. В этом проекте принимают участие более двадцати наиболее развитых в научном отношении стран, включая и Россию.

Описание генома человека ученым удалось получить значительно раньше планировавшихся сроков (2005-2010гг.). Уже в канун нового, XXI века были достигнуты сенсационные результаты в деле реализации указанного проекта. Оказалось, что в геноме человека – от 30 до 40 тысяч генов (вместо предполагавшихся ранее 80-100 тысяч). Это ненамного больше, чем у червяка (19 тысяч генов) или мухи-дрозофилы (13,5 тысячи). Однако, по словам директора Института молекулярной генетики РАН, академика Е.Свердлова, «сетовать на то, что у нас меньше генов, чем предполагалось, пока рано. Во-первых, по мере усложнения организмов один и тот же ген выполняет гораздо больше функций и способен кодировать большее количество белков. Во-вторых, возникает масса комбинаторных вариантов, которых нет у простых организмов. Эволюция весьма экономна: для создания нового занимается «перелицовкой» старого, а не изобретает все вновь. Кроме того, даже самые элементарные частицы, вроде гена, на самом деле невероятно сложны. Наука просто выйдет на следующий уровень познания».[398]

Расшифровка генома человека дала огромную, качественно новую научную информацию для фармацевтической промышленности. Вместе с тем оказалось, что использовать это научное богатство фармацевтической индустрии сегодня не по силам. Нужны новые технологии, которые появятся, как предполагается, в ближайшие 10-15 лет. Именно тогда станут реальностью лекарства, поступающие непосредственно к больному органу, минуя все побочные эффекты. Выйдет на качественно новый уровень трансплантология, получит развитие клеточная и генная терапия, радикально изменится медицинская диагностика и т.д.

Еще одним из перспективнейших направлений в области новейших технологий является нанотехнология. Сферой нанотехнологии – одного из перспективнейших направлений в области новейших технологий – стали процессы и явления, происходящие в микромире, измеряемом нанометрами, т.е. миллиардными долями метра (один нанометр составляют примерно 10 атомов, расположенных вплотную один за другим). Еще в конце 50-х годов ХХ века крупный американский физик Р.Фейнман высказал предположение, что умение строить электрические цепи из нескольких атомов могло бы иметь «огромное количество технологических применений». Однако тогда это предположение будущего нобелевского лауреата никто не воспринял всерьез. [399]

В дальнейшем исследования в области физики полупроводниковых наногетероструктур заложили основы новых информационных и коммуникационных технологий. Достигнутые успехи в этих исследованиях, имеющие огромное значение для развития оптоэлектроники и электроники высоких скоростей, были отмечены в 2000 году Нобелевской премией по физике, которую разделили российский ученый, академик Ж.А.Алферов и американские ученые Г.Кремер и Дж.Килби.

Высокие темпы роста в 80-х – 90-х годах ХХ века информационно-технологической индустрии явились следствием универсального характера использования информационных технологий, их широкого распространения практически во всех отраслях экономики. В ходе экономического развития эффективность материального производства стала во все большей степени определяться масштабами использования и качественным уровнем развития невещной сферы производства. Это означает, что в систему производства вовлекается новый ресурс – информация (научная, экономическая, технологическая, организационно-управленческая), которая, интегрируясь с производственным процессом, во многом ему предшествует, определяет его соответствие меняющимся условиям, завершает превращение производственных процессов в научно-производственные.

Начиная с 80-х годов ХХ века, сперва в японской, затем в западной экономической литературе получил распространение термин «софтизация экономики». Его происхождение связано с превращением невещного компонента информационно-вычислительных систем («мягких» средств программного, математического обеспечения) в решающий фактор повышения эффективности их использования (по сравнению с совершенствованием их вещной, «твердой» аппаратной части). Можно сказать, что «… возрастание влияния нематериальной составляющей на весь ход воспроизводства является сутью понятия софтизации».[400]

Софтизация производства как новая технико-экономическая тенденция обозначила те функциональные сдвиги в хозяйственной практике, которые получили распространение в ходе развертывания второго этапа НТР. Отличительная черта этого этапа «… заключается в одновременном охвате практически всех элементов и стадий материального и нематериального производства, сферы потребления, создания предпосылок для нового уровня автоматизации. Этот уровень предусматривает объединение процессов разработки, производства и реализации продукции и услуг в единый непрерывный поток на базе взаимодействия развивающихся сегодня во многом самостоятельно таких направлений автоматизации, как информационно-вычислительные сети и банки данных, гибкие автоматизированные производства, системы автоматического проектирования, станки с ЧПУ, системы транспортировки и накопления изделий и управления технологическими процессами, робототехнологические комплексы. Основой для такой интеграции выступает широкое вовлечение в производственное потребление нового ресурса – информации, что открывает пути для трансформации дискретных ранее производственных процессов в непрерывные, создает предпосылки для отхода от тейлоризма. При компоновке автоматизированных систем используется модульный принцип, в результате чего проблема оперативного изменения, переналадки оборудования становится органической частью технологии и производится с минимальными издержками и практически без потерь времени».[401]

Второй этап НТР оказался в значительной сиепени связанным с таким технологическим прорывом, как появление и быстрое распространение микропроцессоров на больших интегральных схемах (так называемая «микропроцессорная революция»). Это во много обусловило формирование мощного информационно-индустриального комплекса, включающего электронно-вычислительное машиностроение, микроэлектронную промышленность, производство электронных средств связи и разнообразного конторского и бытового оборудования. Указанный крупный комплекс отраслей промышленности и сферы услуг ориентирован на информационное обслуживание как общественного производства, так и личного потребления (персональный компьютер, например, уже превратился в обычный предмет домашнего длительного пользования).

Решительное вторжение микроэлектроники меняет состав основных фондов в нематериальном производстве, прежде всего, в кредитно-финансовой сфере, торговле, здравоохранении. Но этим не исчерпывается влияние микроэлектроники на сферу нематериального производства. Создаются новые отрасли, масштабы которых сопоставимы с отраслями материального производства. Например, в США реализация средств математического обеспечения и услуг, связанных с обслуживанием компьютеров, уже в 80-х годов превысила в денежном исчислении объемы производства таких крупных отраслей американской экономики, как авиа –, судо – или станкостроение.

На повестке дня современной науки – создание квантового компьютера (КК). Здесь существует несколько интенсивно разрабатываемых в настоящее время направлений: твердотельный КК на полупроводниковых структурах, жидкие компьютеры, КК на «квантовых нитях», на высокотемпературных полупроводниках и т.д. Фактически все разделы современной физики представлены в попытках решения этой задачи.[402]

Пока можно говорить лишь о достижении некоторых предварительных результатов. Квантовые компьютеры еще только проектируются. Но когда они покинут пределы лабораторий, мир во много станет иным. Ожидаемый технологический прорыв должен превзойти достижения «полупроводниковой революции», в результате которой вакуумные электронные лампы уступили место кремниевым кристаллам.

Таким образом, научно-техническая революция повлекла перестройку всего технического базиса, технологического способа производства. Вместе с тем она вызвала серьезные изменения социальной структуры общества, оказала влияние на сферы образования, досуга и т.д.

Можно проследить, какие изменения происходят в обществе подвлиянием научно-технического прогресса. Изменения в структуре производства характеризуются следующими цифрами. [403] В начале XIX века в сельском хозяйстве США было занято почти 75 процентов рабочей силы; к его середине эта доля сократилась до 65 процентов, тогда как в начале 40-х годов XX столетия она упала до 20, уменьшившись в три с небольшим раза за сто пятьдесят лет. Между тем за последние пять десятилетий она уменьшилась еще в восемь раз и составляет сегодня, по различным подсчетам, от 2,5 до 3 процентов. Незначительно отличаясь по абсолютным значениям, но полностью совпадая по своей динамике, подобные процессы развивались в те же годы в большинстве европейских стран. Одновременно произошло не менее драматическое изменение в доле занятых в промышленности. Если по окончании первой мировой войны доли работников сельского хозяйства, промышленности и сферы услуг (первичный, вторичный и третичный секторы производства) были приблизительно равными, то к концу второй мировой войны доля третичного сектора превосходила доли первичного и вторичного вместе взятых. Если в 1900 году 63 процента занятых в народном хозяйстве американцев производили материальные блага, а 37 — услуги, то в 1990 году это соотношение составляло уже 22 к 78, причем наиболее значительные изменения произошли с начала 50-х годов, когда прекратился совокупный рост занятости в сельском хозяйстве, добывающих и обрабатывающих отраслях промышленности, в строительстве, на транспорте и в коммунальных службах, то есть во всех отраслях, которые в той или иной степени могут быть отнесены к сфере материального производства.

В 70-е годы в странах Запада (в Германии с 1972 года, во Франции — с 1975-го, а затем и в США) началось абсолютное сокращение занятости в материальном производстве, и в первую очередь — в материалоемких отраслях массового производства. Если в целом по обрабатывающей промышленности США с 1980 по 1994 год занятость снизилась на 11 процентов, то в металлургии спад составил более 35 процентов. Тенденции, выявившиеся на протяжении последних десятилетий, кажутся сегодня необратимыми; так, эксперты прогнозируют, что в ближайшие десять лет 25 из 26 создаваемых рабочих мест в США придутся на сферу услуг, а общая доля занятых в ней работников составит к 2025 году 83 процента совокупной рабочей силы. Если в начале 80-х годов доля работников, напрямую занятых в производственных операциях, не превышала в США 12 процентов, то сегодня она сократилась до 10 процентов и продолжает снижаться; однако существуют и более резкие оценки, определяющие этот показатель на уровне менее 5 процентов общего числа занятых. Так, в Бостоне, одном из центров развития высоких технологий, в 1993 году в сфере услуг было занято 463 тыс. человек, тогда как непосредственно в производстве — всего 29 тыс. Вместе с тем эти весьма впечатляющие данные не должны, на наш взгляд, служить основанием для признания нового общества «обществом услуг».

Объем производимых и потребляемых обществом материальных благ в условиях экспансии сервисной экономики не снижается, а растет. Еще в 50-е годы Ж.Фурастье отмечал, что производственная база современного хозяйства остается и будет оставаться той основой, на которой происходит развитие новых экономических и социальных процессов, и ее значение не должно преуменьшаться. Доля промышленного производства в ВНП США в первой половине 90-х годов колебалась между 22,7 и 21,3 процента, весьма незначительно снизившись с 1974 года, а для стран ЕС составляла около 20 процентов (от 15 процентов в Греции до 30 в ФРГ). При этом рост объема материальных благ во все большей мере обеспечивается повышением производительности занятых в их создании работников. Если в 1800 году американский фермер тратил на производство 100 бушелей зерна 344 часа труда, а в 1900-м — 147, то сегодня для этого требуется лишь три человеко-часа; в 1995 году средняя производительность труда в обрабатывающей промышленности была в пять раз выше, чем в 1950-м.

Таким образом, современное общество не характеризуется очевидным падением доли материального производства и вряд ли может быть названо «обществом услуг». Мы же, говоря о снижении роли и значения материальных факторов, имеем в виду то, что все большую долю общественного богатства составляют не материальные условия производства и труд, а знания и информация, которые становятся основным ресурсом современного производства в любой его форме.

Становление современного общества как системы, основанной на производстве и потреблении информации и знаний, началось в 50-е годы. Уже в начале 60-х некоторые исследователи оценивали долю «индустрии знаний» в валовом национальном продукте США в пределах от 29,0 до 34,5 процента. Сегодня этот показатель определяется на уровне 60 процентов. Оценки занятости в информационных отраслях оказывались еще более высокими: так, в 1967 году доля работников «информационного сектора» составляла 53,5 процента от общей занятости, а в 80-е г.г. предлагались оценки, достигавшие 70 процентов. Знания как непосредственная производительная сила становятся важнейшим фактором современного хозяйства, а создающий их сектор оказывается снабжающим хозяйство наиболее существенным и важным ресурсом производства. Происходит переход от расширения использования материальных ресурсов к сокращению потребности в них.

Некоторые примеры иллюстрируют это со всей очевидностью. Только за первое десятилетие «информационной» эры, с середины 70-х до середины 80-х годов, валовой национальный продукт постиндустриальных стран увеличился на 32 процента, а потребление энергии — на 5; в те же годы при росте валового продукта более чем на 25 процентов американское сельское хозяйство сократило потребление энергии в 1,65 раза. При выросшем в 2,5 раза национальном продукте Соединенные Штаты используют сегодня меньше черных металлов, чем в 1960 году; с 1973 по 1986 год потребление бензина средним новым американским автомобилем снизилось с 17,8 до 8,7 л/100 км, а доля материалов в стоимости микропроцессоров, применяемых в современных компьютерах, не превышает 2 процентов. В результате за последние сто лет физическая масса американского экспорта осталась фактически неизменной в ежегодном выражении, несмотря на двадцатикратный рост ее реальной стоимости. При этом происходит быстрое удешевление наиболее наукоемких продуктов, способствующее их широкому распространению во всех сферах хозяйства: так, с 1980 по 1995 год объем памяти стандартного персонального компьютера вырос более чем в 250 раз, а его цена из расчета на единицу памяти жесткого диска снизилась между 1983 и 1995 годами более чем в 1 800 раз. В результате возникает экономика «нелимитированных ресурсов», безграничность которых обусловлена не масштабом добычи, а сокращением потребности в них.

Потребление информационных продуктов постоянно возрастает. В 1991 году расходы американских компаний на приобретение информации и информационных технологий, достигшие 112 млрд. долл., превысили затраты на приобретение основных производственных фондов, составившие 107 млрд. долл.; уже на следующий год разрыв между этими цифрами вырос до 25 млрд. долл. Наконец, к 1996 году первый показатель возрос фактически вдвое, до 212 млрд. долл., тогда как второй остался практически неизменным. К началу 1995 года в американской экономике при помощи информации производилось около трех четвертей добавленной стоимости, создаваемой в промышленности. По мере развития информационного сектора хозяйства становится все более очевидным, что знания являются важнейшим стратегическим активом любого предприятия, источником творчества и нововведений, основой современных ценностей и социального прогресса — то есть поистине неограниченным ресурсом.

Таким образом, развитие современного общества приводит не столько к замене производства материальных благ производством услуг, сколько к вытеснению материальных компонентов готового продукта информационными составляющими. Следствием этого становится снижение роли сырьевых ресурсов и труда как базовых производственных факторов, что является предпосылкой отхода от массового создания воспроизводимых благ как основы благосостояния общества. Демассификация и дематериализация производства представляют собой объективную составляющую процессов, ведущих к становлению постэкономического общества.

С другой стороны, на протяжении последних десятилетий идет и иной, не менее важный и значимый процесс. Мы имеем в виду снижение роли и значения материальных стимулов, побуждающих человека к производству.

Все сказанное позволяет сделать вывод, что научно-технический прогресс приводит к глобальной трансформации общества. Общество вступает в новую фазу своего развития, которую многие социологи определяют как «информационное общество».


Дата добавления: 2015-10-21; просмотров: 78 | Нарушение авторских прав


Читайте в этой же книге: Абстрактного к конкретному | Эксперимент | YIII.4.3.Формализация. Язык науки | YIII.5.1.Анализ и синтез | YIII.5.2.Аналогия и моделирование | IX.1. Что такое наука? | IX.2.Наука как особый вид деятельности | IX.3.Закономерности развития науки. | IX.4. Классификация наук | Как социальные явления |
<== предыдущая страница | следующая страница ==>
IX.6. Взаимоотношение науки и техники| IX.8. Социальные и этические проблемы научно-технического прогресса

mybiblioteka.su - 2015-2025 год. (0.021 сек.)