|
Seances De l’Academie Des Sciences, 1963;
256(11): 2433.
219 Belder, A.N.D., B. Lindberg,
O. Theander, Oxidation of glycosides.
13. Oxidation of methyl beta-D-glucopyranoside
with Fenton’s reagent. Acta
Chim. Scand., 1963; 17(4): 1012.
220 Gilbert, B.C., D.M. King, C.B. Thomas,
Radical reactions of carbohydrates.
References 907
4. Electron-spin resonance studies of
radical-induced oxidation of some aldopentoses,
sucrose, and compounds containing
furanose rings. J. Chem. Soc. –
Perkin Trans. 2, 1983 (5): 675–683.
221 Gilbert, B.C., D.M. King, C.B. Thomas,
Radical reactions of carbohydrates. 3. An
electron-spin resonance investigation of
base-catalyzed rearrangements of radicals
derived from deuterium-glucose
and related-compounds. J. Chem. Soc. –
Perkin Trans. 2, 1982 (2): 169–179.
222 Gilbert, B.C., D.M. King, C.B. Thomas,
Radical reactions of carbohydrates.
5. The oxidation of some polysaccharides
by the hydroxyl radical – an electron-
spin-resonance investigation. Carbohydrate
Res., 1984; 125(2): 217–235.
223 Gilbert, B.C., D.M. King, C.B. Thomas,
Radical reactions of carbohydrates. 2. An
electron-spin resonance study of the oxidation
of D-glucose and related-compounds
with the hydroxyl radical.
J. Chem. Soc. – Perkin Trans. 2, 1981 (8):
1186–1199.
224 McGrouther, K.G., I.D. Suckling,
R.W. Allison, D. Lachenal, Carbohydrate
degradation during oxygen delignification.
A model study of the role of transition
metals, lignin models and glucose.
International Pulp Bleaching Conference:
Poster Presentations, 2000: 31–36.
225 Morelli, R., S. Russo-Volpe, N. Bruno,
R. Lo Scalzo, Fenton-dependent damage
to carbohydrates: Free radical scavenging
activity of some simple sugars.
J. Agric. Food Chem., 2003; 51(25):
7418–7425.
226 Stenman, D., M. Carlsson, T. Reitberger,
Peroxynitrite mediated delignification of
pulp: A comparative study on the
bleaching properties of the carbonate
and hydroxyl radicals. J. Wood Chem.
Technol., 2004; 24(2): 83–98.
227 Roots, R., S. Okada, Estimation of life
times and diffusion distances of radicals
involved in X-ray-induced DNA strand
breaks or killing of mammalian cells.
Radiat. Res., 1975; 64(2): 306–320.
228 Yanagida, H., Y. Masubuchi,
K. Minagawa, T. Ogata, J. Takimoto,
K. Koyama, A reaction kinetics model of
water sonolysis in the presence of a
spin-trap. Ultrason. Sonochem., 1999;
5(4): 133–139.
229 Li, B.B., P.L. Gutierrez, N.V. Blough,
Trace determination of hydroxyl radical
in biological systems. Anal. Chem.,
1997; 69(21): 4295–4302.
230 Takeda, K., H. Takedoi, S. Yamaji,
K. Ohta, H. Sakugawa, Determination
of hydroxyl radical photoproduction
rates in natural waters. Anal. Sci., 2004;
20(1): 153–158.
231 Ohashi, Y., H. Yoshioka, H. Yoshioka,
Detection of 2-deoxy-D-ribose radicals
generated by the reaction with the hydroxyl
radical using a rapid flow-ESR
method. Biosci. Biotechnol. Biochem.,
2002; 66(4): 847–852.
232 Biaglow, J.E., Y. Manevich, F. Uckun,
K.D. Held, Quantitation of hydroxyl radicals
produced by radiation and copperlinked
oxidation of ascorbate by 2-deoxy-
D-ribose method. Free Radical Biol.
Med., 1997; 22(7): 1129–1138.
233 Manevich, Y., K.D. Held, J.E. Biaglow,
Coumarin-3-carboxylic acid as a detector
for hydroxyl radicals generated chemically
and by gamma radiation. Radiat.
Res., 1997; 148(6): 580–591.
234 Yang, X.F., X.Q. Guo, Study of nitroxide-
linked naphthalene as a fluorescence
probe for hydroxyl radicals. Anal.
Chim. Acta, 2001; 434(2): 169–177.
235 Tai, C., X.X. Gu, H. Zou, Q.H. Guo, A
new simple and sensitive fluorometric
method for the determination of hydroxyl
radical and its application.
Talanta, 2002; 58(4): 661–667.
236 Tornberg, K., S. Olsson, Detection of hydroxyl
radicals produced by wooddecomposing
fungi. FEMS Microbiol.
Ecol., 2002; 40(1): 13–20.
237 King, M., R. Kopelman, Development of
a hydroxyl radical ratiometric nanoprobe.
Sensors and Actuators B – Chemical,
2003; 90(1–3): 76–81.
238 Vasquez-Vivar, J., J. Joseph, H. Karoui,
H. Zhang, J. Miller, P. Martasek, EPR
spin trapping of superoxide from nitric
oxide synthase. Analusis, 2000; 28(6):
487–492.
239 Ge, B., F. Lisdat, Superoxide sensor
based on cytochrome c immobilized on
mixed-thiol SAM with a new calibration
908 7Pulp Bleaching
method. Anal. Chim. Acta, 2002; 454(1):
53–64.
240 Farmer, P.J., W. Liu, Cyt c modified electrodes
for superoxide detection. Free
Radical Biol. Med., 2002; 33: S424–S424.
241 Lvovich, V., A. Scheeline, Amperometric
sensors for simultaneous superoxide
and hydrogen peroxide detection. Anal.
Chem., 1997; 69(3): 454–462.
242 Tarpey, M.M., I. Fridovich,Methods of
detection of vascular reactive species.
Nitric oxide, superoxide, hydrogen peroxide,
and peroxynitrite. Circ. Res., 2001;
89(11): 224–236.
243 Afanas’ev, I.B., Lucigenin chemiluminescence
assay for superoxide detection.
Circ. Res., 2001; 89(11): E46–E46.
244 Kocˇar, D., M. Strlicˇ, J. Kolar, B. Pihlar, A
new method for determination of hydroperoxides
in cellulose. Anal. Bioanal.
Chem., 2002; 374(7–8): 1218–1222.
245 Kolar, J., M. Strlicˇ, B. Pihlar, New colorimetric
method for determination of hydroxyl
radicals during ageing of cellulose.
Anal. Chim. Acta, 2001; 431(2):
313–319.
246 Sjostrom, E., O. Valttila, Inhibition of
carbohydrate degradation during oxygen
bleaching. 1. Comparison of various
additives. Pap. Puu, 1972; 54(11): 695.
247 Laine, C., T. Tamminen, Origin of carbohydrates
dissolved during oxygen
delignification of birch and pine kraft
pulp. Nordic Pulp Paper Res. J., 2002;
17(2): 168–171.
248 Laine, C., T. Tamminen, A. Vikkula,
T. Vuorinen, Methylation analysis as a
tool for structural analysis of wood polysaccharides.
Holzforschung, 2002; 56(6):
607–614.
249 Gustavsson, R., B. Swan, Evaluation of
the degradation of cellulose and delignification
during oxygen bleaching. Tappi,
1975; 58: 120–123.
250 Nunn, J.R., M.J.v.d. Linde. The protective
action of magnesium in oxygen
bleaching of pulp. Part 1: The complexing
of methyl-alpha-D-glucopyranoside
with magnesium ions. In First International
Symposium on Delignification
with Oxygen Ozone and Peroxides.
Raleigh, North Carolina, USA: North
Caroline State University, 1975.
251 Abbot, J., D.G. Brown, G.C. Hobbs,
I.J. Jewell, P.J. Wright, The influence of
manganese and magnesium on alkaline
peroxide bleaching of radiata pine thermomechanical
pulp. Appita J., 1992;
45(2): 109.
252 Elashmawy, A.E., S.O. Heikal,
M.H. Fadl, Effect of magnesium salts
on soda-oxygen bleaching of kraft
bagasse pulp. Research and Industry,
1983; 28(2): 130–132.
253 Brown, D.G., and J. Abbot, Magnesium
as a stabilizer for peroxide bleaching of
mechanical pulp. Appita J., 1994; 47(3):
211–216.
254 Ni, Y.H., A.R.P. Van Heiningen,
G.J. Kang, A. Humphrey, R.W. Thring,
A. Skothos, Improved oxygen delignification
for magnesium-based sulfite
pulps. Tappi J., 1998; 81(10): 165–169.
255 Samuelson, O., U. Ojteg, Influence of
manganese and magnesium on oxygen
bleaching in carbonate media after a
nitrogen dioxide pretreatment. Holzforschung,
1996; 50(4): 379–385.
256 Samuelson, O., U. Ojteg, Influence of
magnesium during oxygen bleaching in
the presence of manganese. Cellulose
Chem. Technol., 1995; 29(1): 55–63.
257 Liden, J., L.O. Ohman, Redox stabilization
of iron and manganese in the +II
oxidation state by magnesium precipitates
and some anionic polymers. Implications
for the use of oxygen-based
bleaching chemicals. J. Pulp Paper Sci.,
1997; 23(5): J193–J199.
258 Wiklund, L., L.O. Ohman, J. Liden,
Solid solution formation between
Mn(II) and Mg(II) hydroxides in alkaline
aqueous solution. Nordic Pulp Paper
Res. J., 2001; 16(3): 240–245.
259 Wiklund, L., L.-O. Ohman, J. Liden, Surface
precipitation of MgCO3 on MnCO3
in aqueous solution at 90 °C. Nordic
Pulp Paper Res. J., 2001; 16: 339–345.
260 Landucci, L.L., Effects of transition metals
in oxidative delignification. In First
International Symposium on Delignification
with Oxygen Ozone and Peroxides.
Raleigh, North Carolina, USA:
North Caroline State University, 1975.
261 Sun, Y., M. Fenster, A. Yu, R.M. Berry,
D.S. Argyropoulos, The effect of metal
ions on the reaction of hydrogen perox References
ide with Kraft lignin model compounds.
Can. J. Chem.- Rev. Canadienne De Chimie,
1999; 77(5–6): 667–675.
262 Rodriguez, S.K., K.L. Wilson,
R.C. Francis, Effect of adsorbed transition
metals on hydrogen peroxide
bleaching of thermomechanical pulp.
Annual Meeting – Technical Section,
Canadian Pulp and Paper Association,
Preprints, 1996.
263 Rasanen, E., L. Karkkainen, Modelling
of complexation of metal ions in pulp
suspensions. J. Pulp Paper Sci., 2003;
29(6): 196–203.
264 Lapierre, L., R. Berry, J. Bouchard, The
effect of magnesium ions and chelants
on peroxide bleaching. Holzforschung,
2003; 57(6): 627–633.
265 Moreira, M.T., G. Feijoo, J. Canaval,
J.M. Lema, Semipilot-scale bleaching of
Kraft pulp with manganese peroxide.
Wood Sci. Technol., 2003; 37(2): 117–123.
266 Wekesa, M., Y. Ni, Stabilization of peroxide
systems by silicate and calcium carbonate
and its application to bleaching
of recycled fibres. Pulp Paper Can., 2003;
104(12): 85–87.
267 Qiu, Z., Y. Ni, Improving peroxide
bleaching by decreasing manganese
induced peroxide decomposition. International
Pulp Bleaching Conference:
Poster Presentations, 2000: 139–154.
268 Ni, Y.H., Z.P. Qiu, Methods to decrease
manganese-induced decomposition of
peroxide. Appita J., 2003; 56(5):
355–358.
269 Kishimoto, T., F. Nakatsubo, Non-chlorine
bleaching of kraft pulp – IV. Oxidation
of methyl 4-O-ethyl-beta-D-glucopyranoside
with Fenton’s reagent:
Effects of pH and oxygen. Holzforschung,
1998; 52(2): 180–184.
270 Yokoyama, T., Y. Matsumoto,
G. Meshitsuka, The role of peroxide species
in carbohydrate degradation during
oxygen bleaching. Part III: Effect of
metal ions on the reaction selectivity between
lignin and carbohydrate model
compounds. J. Pulp Paper Sci., 1999;
25(2): 42–46.
271 Wekesa, M., Y.H. Ni, Further understanding
of the chemistry of manganese-
induced peroxide decomposition.
Can. J. Chem. Eng., 2003; 81(5):
968–972.
272 Gartner, A., G. Gellerstedt, Oxidation of
residual lignin with alkaline hydrogen
peroxide. Part II: Elimination of chromophoric
groups. J. Pulp Paper Sci.,
2001; 27(7): 244–248.
Sections 7.3.3–7.3.8
1 Olm, L., A. Teder, The kinetics of oxygen
bleaching. Tappi, 1979; 62(12):
43–46.
2 Myers, M.R., L.L. Edwards, Development
and verification of a predictive
oxygen delignification model for hardwood
and softwood kraft pulp. Tappi J.,
1989; 72(9): 215–219.
3 Agarwal, S.B., et al., Kinetics of oxygen
delignification. J. Pulp Paper Sci., 1999;
25(10): 361–366.
4 Avrami, M., Kinetics of phase change II
– transformation-time relations for random
distribution of nuclei. J. Chem.
Phys., 1940; 8: 212–224.
5 Valchev, I., E. Valchev, E. Christova,
Kinetics of oxygen delignification of
hardwood kraft pulp. Cellulose Chem.
Technol., 1999; 33: 303–310.
6 Macleod, J.M., J. Li, Alkaline leaching of
kraft pulps for lignin removal. In TAPPI
Pulping Conference, 1992.
7 Ackert, J.E., D.D. Koch, L.L. Edwards,
Displacement chlorination of kraft
pulps – an experimental study and comparison
of models. Tappi, 1975; 58(10):
141–145.
8 Edwards, L., S. Norberg, Tappi, 1973;
56(11): 108–111.
9 Hsu, C.L., J.S. Hsieh, Oxygen bleaching
kinetics at ultra-low consistency. Tappi
J., 1987: 107–111.
10 Hsu, C.L., J.S. Hsieh, Reaction kinetics
in oxygen bleaching. AIChE J., 1988;
34(1): 116–122.
11 Iribarne, J., L.R. Schroeder, High pressure
oxygen delignification of kraft
pulps I – Kinetics. Tappi Proceedings –
Pulping Conference, 1995: 125–133.
12 Iribarne, J., L.R. Schroeder, High-pressure
oxygen delignification of kraft
910 7Pulp Bleaching
pulps. Part I: kinetics. Tappi J., 1997;
80(10): 241–250.
13 Vincent, A.H.D., K.L. Nguyen,
J.F. Mathews, Kinetics of oxygen
delignification of eucalypt kraft pulp.
Appita, 1994; 47(3): 217–220.
14 Zou, H., et al., Influence of kraft pulping
on the kinetics of oxygen delignification.
Tappi, 2000; 83(2): 65–71.
15 Axegard, P., S. Moldenius, L. Olm,
Basic chemical kinetics equations are
useful for understanding of pulping
processes. Svensk. Papperstidn., 1979;
82(5): 131–136.
16 Schoon, N.H., Interpretation of rate
equation for kinetic studies of wood
pulping and bleaching. Svensk. Papperstidn.,
1982: R185–R193.
17 Nguyen, K.L., H. Liang, Kinetic model
of oxygen delignification. Part 1– effect
of process variables. Appita J., 2002;
55(2): 162–165.
18 Quillin, D.T., et al., Crystallinity in the
polypropylene/cellulose system – crystallization
kinetics. J. Appl. Polym. Sci.,
1994; 52: 605.
19 Agarwal, S.B., et al., Kinetics of oxygen
delignification. J. Pulp Paper Sci., 1999;
25(10): 361–366.
20 Jarrehult, B., Oxygen-alkali treatment of
kraft pulp and cellobitol. In Institutionen
for Teknisk Kemi. PhD-Thesis,
Chalmers Tekniska Hogskola: Goteborg,
1992.
21 Jarrehult, B., O. Samuelson, Oxygen
bleaching of kraft pulps at low consistency.
Svensk. Papperstidn., 1978; 81:
533–540.
22 Ekenstam, A., Uber das Verhalten der
Cellulose in Mineralsaure-Losungen, II.
Mitteilung: Kinetisches Studium des
Abbaus der Cellulose in Saurelosungen.
Ber. Dtsch. Chem. Ges., 1936; 69:
553–559.
23 Godsay, M.P., E.M. Pearce, Physicochemical
properties of ozone oxidized
kraft pulps. In Tappi Symposium – Oxygen
Delignification, 1984.
24 Immergut, E.H., B.G. Ranby, H.F.
Mark, Molecular weight of cellulose.
Дата добавления: 2015-10-21; просмотров: 87 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
J. Japan Wood Res. Soc. (Mokuzai | | | In Pulp bleaching, principles and |