Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Полиномы Жегалкина

Полиномом (многочленом) Жегалкина от п переменных называется функция

P = a0 + a1x1 +a2x2 +...anxn +an +1x1x2 +...+an +C2nxn-1xn +...+a2n-1x1x2..xn

Всего здесь 2 п слагаемых. Напомним, что + сейчас означает сложение по модулю 2, коэффициенты a0, a1,..., a2n-1 являются константами (равными нулю или единице).

Теорема. Любая функция п переменных может быть представлена полиномом Жегалкина и это представление единственно.

Доказательство. Любая функция f(x 1, x 2, , xn) имеет свою таблицу истинности. Запишем сначала данную функцию в виде полинома Жегалкина с неопределенными коэффициентами. Затем по очереди подставляем всевозможные наборы переменных и находим коэффициенты. Легко видеть, что за каждую подстановку находим только один коэффициент. Так как число наборов равно числу коэффициентов (и равно 2 п), отсюда следует утверждение теоремы.

Доказательство этой теоремы показывает, как по таблице истинности построить полином Жегалкина.

Имеется 2-й способ нахождения полинома Жегалкина для функций, заданных в виде ДНФ. Этот способ основан на том, что х +1 = . Если функция задана в виде ДНФ, то сначала убираем дизъюнкцию, используя при этом правило де Моргана, а все отрицания заменяем прибавлением единицы. После этого раскрываем скобки по обычным правилам, при этом учитываем, что четное число одинаковых слагаемых равно нулю (так как х+ х = 0), а нечетное число одинаковых слагаемых равно одному такому слагаемому.

Пример.

(xy + 1)((x + 1)(y + 1) + 1)((y + 1)z + 1) + 1 = (xy + 1)(xy + x + y)(yz + z + 1) + 1 = (x + y)(yz + z + 1) + 1= xyz + yz + xz +yz + x + y + 1 = xyz + xz + x +y + 1.

Последнее выражение и есть полином Жегалкина данной функции.

Функция f (x 1, x 2, , xn) называется линейной, если ее полином Жегалкина содержит только первые степени слагаемых. Более точно функция называется линейной, если ее можно представить в виде

f(x 1, x 2, , xn) = a0 + a1 x 1 + a2 x 2 +…+ a n xn.

Класс линейных функций часто обозначают через L. (Заметим, что число линейных функций п переменных равно 2 п+ 1 ).

Замечание. Если п ³2 то линейная функция в таблице истинности может содержать только четное число единиц. Действительно, если f(x 1, x 2, , xn) = x 1 + x 2 +…+xn , то легко видеть что такая функция в таблице истинности содержит одинаковое число нулей и единиц а именно 2 п / 2 единиц и нулей, т. е. число это четно при п ³2. Столько же нулей и единиц имеет функция .Добавлениежефиктивнойпеременной приводитк увеличению числа единиц (и нулей) в два раза. Разумеется, нелинейная функция может иметь в таблице истинности как четное, так и нечетное число единиц.


Дата добавления: 2015-10-21; просмотров: 147 | Нарушение авторских прав


Читайте в этой же книге: РИО СПбГУТ. 191186, СПб, наб. р. Мойки, 61 | ЛОГИЧЕСКИЕ (БУЛЕВЫ) ФУНКЦИИ | Две функции равны, если совпадают их таблицы истинности (на объединенном наборе переменных). | Свойства конъюнкции, дизъюнкции и отрицания | ДНФ, СДНФ, КНФ, СКНФ | Представление логических функций в виде СДНФ (СКНФ) | Функциональные элементы и схемы | Общие понятия теории графов | Эйлеровы и полуэйлеровы графы | Матрицы и графы. Нахождение путей и сечений с помощью структурной матрицы |
<== предыдущая страница | следующая страница ==>
Нахождение сокращенной ДНФ по таблице истинности (карты Карно)| Суперпозиция функций. Замыкание набора функций.Замкнутые классы функций. Полные наборы. Базисы

mybiblioteka.su - 2015-2024 год. (0.006 сек.)