Читайте также:
|
|
Греющая камера.
G = Gап / fк fк = 0.785´(D2н – Dв2) = 0,785´(1,4052 – 1,42) = 0,011 м2
G = 15170 / 0,011 = 1,38 МПа
Определим основные размеры опоры (лапы) типа VIII (см. рис. 29.1) для вертикального цилиндрического аппарата, подвешенного на четырех лапах. по следующим данным: нагрузка, воспринимаемая одной лапой, G = 1,38 МПа; материал корпуса аппарата и лап — сталь (sид = sсд =120 Мн/м2); число ребер в лапе z=2; вылет опоры l = 0,3 м; лапы опираются на деревянные подкладки (qд = 2,7 Мн/м2 ); толщина стенки цилиндрического корпуса аппарата = 5 мм (Ск= 2м)диаметр корпуса = 1,4 м.
Принимаем отношение вылета лапы к высоте ребра l/h=0.5
Тогда
Расчетную толщину ребра лапы при k = 0.6 определяем по формуле (29.1):
Отношение
Принимаем с учетом прибавки на коррозию толщину ребра s = 45 мм. Выбираем длину опорной плиты лапы l1 = 0.25 м.,а толщину ее s =45 мм.
Расчетная ширина опорной плиты лапы
Принимаем b = 0.40 м.
Ребра привариваются к корпусу сплошным круговым швом с катетом hш =8мм Общая длина сварного шва
Lш =4(h + s)=4 (0.6 + 0.045) = 2.58 м.
Прочность сварного шва при tсд = 80 Мн/м2 проверяем по формуле (29.2):
т. е. прочность обеспечена.
Полагая b = B и h = H, определим максимальные напряжения сжатия в корпусе аппарата в месте присоединения к нему лап. Предварительно находим значения параметров:
Момент от реакции опоры, действующий на лапу при расчетном плече l’ = 0,15 м,
По графикам на рис. 29.7 определяем значение коэффициентов К: для
Параметр b для нахождениямоментов, действующих на корпус, определяем по формуле (29.3):
для определения меридиональных моментов
для определения кольцевых моментов
По графику на рис. 29.3 при b2 = 0,429 и
определяем параметр откуда
По графику на рис. 29.4 при b1 = 0,286 и определяем параметр откуда
Параметр b для нахождения сил, действующих на корпус, определяем по формуле (29.4):
По графику на рис. 29.8 определяем значение коэффициентов К: для
Для b = 0,375и находим: по графику на рис. 29.5
; по графику на рис. 29.6
откуда значения PM и PK будут равны:
Суммарные напряжения сжатия в корпусе аппарата при толщине стенки s-CK = 0,004 м в месте присоединения лапы (сверху) определяем:
в меридиональном направлении по формуле (29.5)
в кольцевом направлении по формуле (29.6)
Так как получившиеся напряжения больше допускаемых к аппарату привариваем подкладной лист толщиной 25 мм, тогда sс = 67,5МПа sс = 112,8 МПа
Сепарационная камера.
G = Gап / fк fк = 0.785´(D2н – Dв2) = 0,785´(2,2072 – 2,22) = 0,024 м2
G = 30340 / 0,024 = 1,26 МПа
Определим основные размеры опоры (лапы) типа VIII (см. рис. 29.1) для вертикального цилиндрического аппарата, подвешенного на четырех лапах. по следующим данным: нагрузка, воспринимаемая одной лапой, G = 1,26 МПа; материал корпуса аппарата и лап — сталь (sид = sсд =120 Мн/м2); число ребер в лапе z=2; вылет опоры l = 0,3 м; лапы опираются на деревянные подкладки (qд = 2,7 Мн/м2 ); толщина стенки цилиндрического корпуса аппарата = 7 мм (Ск= 2м)диаметр корпуса = 2,2 м.
Принимаем отношение вылета лапы к высоте ребра l/h=0.5
Тогда
Расчетную толщину ребра лапы при k = 0.6 определяем по формуле (29.1):
Отношение
Принимаем с учетом прибавки на коррозию толщину ребра s = 70 мм. Выбираем длину опорной плиты лапы l1 = 0.3 м.,а толщину ее s =70 мм.
Расчетная ширина опорной плиты лапы
Принимаем b = 0.55 м.
Ребра привариваются к корпусу сплошным круговым швом с катетом hш =8мм Общая длина сварного шва
Lш =4(h + s)=4 (0.6 + 0.07) = 2.68 м.
Прочность сварного шва при tсд = 80 Мн/м2 проверяем по формуле (29.2):
т. е. прочность обеспечена.
Полагая b = B и h = H, определим максимальные напряжения сжатия в корпусе аппарата в месте присоединения к нему лап. Предварительно находим значения параметров:
Момент от реакции опоры, действующий на лапу при расчетном плече l’ = 0,15 м,
По графикам на рис. 29.7 определяем значение коэффициентов К: для
Параметр b для нахождениямоментов, действующих на корпус, определяем по формуле (29.3):
для определения меридиональных моментов
для определения кольцевых моментов
По графику на рис. 29.3 при b2 = 0,27 и
определяем параметр откуда
По графику на рис. 29.4 при b1 = 0,25 и определяем параметр откуда
Параметр b для нахождения сил, действующих на корпус, определяем по формуле (29.4):
По графику на рис. 29.8 определяем значение коэффициентов К: для
Для b = 0,263и находим: по графику на рис. 29.5
; по графику на рис. 29.6
откуда значения PM и PK будут равны:
Суммарные напряжения сжатия в корпусе аппарата при толщине стенки s-CK = 0,006 м в месте присоединения лапы (сверху) определяем:
в меридиональном направлении по формуле (29.5)
в кольцевом направлении по формуле (29.6)
Так как получившиеся напряжения больше допускаемых к аппарату привариваем подкладной лист толщиной 30 мм, тогда sс = 108 МПа sс = 118 МПа
3.3 Расчет закрепления труб в трубной решетке .
Большее давление в трубном пространстве pm= 0,457 МН/м2, трубы dн = 0,025 м t = 0,032 м.
Расчетная осевая сила, действующая в месте закрепления трубы в решетке:
Допускаемая нагрузка приходящаяся на единицу условной поверхности, для стали при гладкой развольцовке выбираем по таблице 25.4 [2] q = 15 МН/м2.
Рассчитываем высоту трубной решетки исходя из закрепления в ней труб
то же по формуле
Номинальная расчетная высота решетки снаружи
K = 0.28 D = Dв = 1400 мм
P = 0,457 МПа sид = 140 Мпа
Принимаем h = 60 мм
d
h
d = (1.02- 1.016) dн
Дата добавления: 2015-10-13; просмотров: 169 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Определение толщины стенки аппарата. | | | Описание аппарата с выносной греющей камерой. |