|
Но сначала о том, что такое фракталы. Потом мы покажем, как они связаны с так называемыми степенными, или масштабируемыми, законами.
Слово фрактал введено Мандельбротом для описания геометрии неровного, ломаного (оно образовано от латинского fractus —дробный, фрагментарный). Фрактальностъ — это повторение в разном масштабе геометрических узоров, плодящих все более и более мелкие версии самих себя. Каждая часть в некоторой степени напоминает целое. Я постараюсь показать в этой главе, как фракталы соотносятся с тем типом неопределенности, который должен носить имя Мандельброта: мандельбротовская случайность.
Прожилки в листьях выглядят как ветви; ветви выглядят как деревья; камни выглядят как маленькие горы. Когда предмет меняет размер, не происходит качественных изменений. Если взглянуть на побережье Британии с самолета, оно напоминает то, что ты видишь, глядя на его крохотный кусочек в увеличительное стекло. Такой род самоподобия подразумевает, что одно обманчиво короткое и простое правило повторения может использоваться либо компьютером, либо, более произвольно, матерью-природой, чтобы строить формы, кажущиеся очень сложными. Это правило может оказаться полезным для компьютерной графики, но, что важнее, именно так работает природа. Мандельброт выстроил математический объект, известный сейчас как множество Мандельброта, самый знаменитый объект в истории математики. Множество приобрело популярность у последователей теории хаоса, потому что оно плодит картины все возрастающей сложности, подчиняясь на вид пустяковому рекурсивному правилу (то есть такому, кото-
рое способно применять себя к себе же до бесконечности). Можно рассматривать этот объект во все более и более крупном масштабе, так и не достигая предела — формы будут по-прежнему узнаваемыми. Они никогда не повторяются, но обладают сходством друг с другом, общими семейными чертами.
Такие построения играют заметную роль в искусстве. Вот несколько примеров:
Визуальные искусства. Сейчас в основе большинства объектов компьютерной графики лежит та или иная разновидность мандельбротова фрактала. Фракталы также встречаются в архитектуре и живописи — разумеется, неосознанно включенные художниками в структуру произведения.
Музыка. Медленно напойте первые четыре ноты Пятой симфонии Бетховена: "Та-та-та-та!" Затем замените каждую отдельную ноту тем же самым началом из четырех нот, так что получится такт из шестнадцати нот. Вы увидите (вернее, услышите), что каждая маленькая волна напоминает исходную большую. У Баха и Малера, например, музыкальная тема часто состоит из нескольких подтем, похожих на нее.
Поэзия. Поэзия Эмили Дикинсон, к примеру, фрактальна: крупное напоминает мелкое. Поэтесса, по мнению комментатора, "плетет продуманный узор из слов, размеров, рефренов, движений и звуков".
Сначала фракталы сделали Бенуа М. парией в математическом истеблишменте. Французские математики были в ужасе. Что? Картинки? Mon dieu! Это все равно что показать порнофильм собранию набожных православных бабушек в моем родном Амиуне. Поэтому Мандельброт некоторое время оставался интеллектуальным изгоем, работая в иссле
довательском центре "Ай-би-эм" на севере штата Нью-Йорк. Это было типичное "в ж... деньги!", так как айбиэмовское жалованье позволяло ему заниматься чем хочется.
Но масса людей (прежде всего компьютерщиков) сразу схватила суть. Книга Мандельброта "Фрактальная геометрия природы", вышедшая в свет четверть века назад, произвела настоящий фурор. Ею зачитывались в художественных кругах, она дала толчок новым идеям в искусстве, в архитектурном дизайне, даже крупным индустриальным проектам. Ман-дельброту предложили место профессора медицины! Может статься, легкие самоподобны? На лекции Бенуа М. ломом ломились художники и артисты, за что его прозвали "рок-звездой математики". Компьютерный век помог ему стать одним из самых востребованных математиков в истории, причем гораздо раньше, чем он был признан обитателями башни из слоновой кости. Мы вскоре увидим, что его теория, вдобавок к универсальности, обладает одним необычным свойством: она на редкость проста для понимания.
Несколько слов о его биографии. Мандельброт приехал во Францию из Варшавы в 1936 году, в двенадцать лет. Из-за тягот нелегальной жизни в оккупированной нацистами Франции он, учась в основном самостоятельно, отчасти избежал традиционного галльского образования с его отупляющей зубрежкой алгебры. Позже на него сильно повлиял его дядя Шолем, видный представитель французского математического истеблишмента, возглавлявший кафедру в Коллеж де Франс. Поселившись в Соединенных Штатах, Бенуа М. работал в основном как ученый-прикладник, лишь спорадически занимая академические должности.
Компьютер играл две роли в новой науке, становлению которой помог Мандельброт. Во-первых, фрактальные объекты, как мы видели, могут генерироваться путем примене
ния простого правила к самому себе, что идеально подходит для автоматической деятельности компьютера (или материприроды). Во-вторых, в процессе генерирования интуитивных образов происходит постоянная притирка между математиком и создаваемыми объектами.
Посмотрим теперь, какое отношение все это имеет к случайности. Если быть точным, карьера Мандельброта началась именно с вероятности.
Визуальный подход
к Крайнестану / Среднестану
Я смотрю на ковер в своем кабинете. Если я буду изучать его через микроскоп, то увижу пересеченную местность. Если я стану разглядывать его через увеличительное стекло, то местность покажется мне более ровной, но все же весьма ухабистой. Но когда я смотрю на него с высоты своего роста, он выглядит почти таким же гладким, как лист бумаги. Ковер, обозреваемый невооруженным глазом, соответствует Среднестану и закону больших чисел: я вижу сумму волнистостей, которые сглаживаются. Это как гауссова случайность: моя чашка с кофе не подпрыгивает на столе, потому что суммарное движение всех ее частиц оборачивается стабильностью. Таким же образом, суммируя маленькие гауссовы неопределенности, получаешь определенность: это закон больших чисел.
Гауссиана не самоподобна, и поэтому моя кофейная чашка не прыгает.
Рассмотрим теперь прогулку в горы. Как высоко ни поднимешься над поверхностью земли, она будет оставаться неровной. Даже при взгляде с высоты 30 ооо футов. Когда летишь над Альпами, вместо маленьких камешков видишь зазубрен
ные вершины. Значит, некоторые поверхности — не из области Среднестана и изменение масштаба не приводит к их сглаживанию. (Заметим, что эффект выравнивания достигается, только если подняться на еще большую высоту. Наша планета представляется гладким шаром тем, кто наблюдает за ней из космоса, но это потому, что она слишком маленькая. Будь Земля крупнее, на ней нашлись бы горы, превосходящие по высоте Гималаи, и потребовалась бы еще большая удаленность от нее, чтобы их очертания стерлись. Точно так же, живи на Земле больше людей, пусть даже с тем же средним достатком, наверняка нашелся бы кто-то, чей капитал перекрыл бы состояние Билла Гейтса.)
Рисунки 11 и 12 иллюстрируют эту идею: глядя на первый рисунок, можно подумать, что на землю упала крышка от объектива.
Вернемся к нашему краткому упоминанию побережья Британии. Если взглянуть на него с самолета, контуры не будут так уж отличаться от контуров, видимых с ближайшего обрыва. Изменение масштаба не меняет формы или степени гладкости.
Бисер перед свиньями
Но какое отношение фрактальная геометрия имеет к распределению капитала, величине городов, обороту финансовых рынков, потерям на войне или размеру планет? Давайте соединим точки.
Ключ здесь в том, что у фрактала есть числовая, или статистическая, размерность, которая (более или менее) сохраняется при изменении масштаба, — пропорции (в отличие от гауссианы) постоянны. Другой пример такого самоподобия представлен на рисунке 13. Как мы знаем из главы 15, сверхбогатые сходны с богатыми, только богаче, — богатство масштабно-независимо, или, вернее, о его зависимости ничего не известно.
В 1960-е годы Мандельброт изложил свои идеи о ценах на предметы потребления и акции экономической элите, и экономисты-финансисты пришли в восторг. В 1963 году тогдашний декан бизнес-магистратуры университета Чикаго Джордж Шульц предложил ему место профессора. Это тот самый Джордж Шульц, который позже стал госсекретарем Рональда Рейгана.
Через некоторое время Шульц позвонил ему, чтобы отказаться от своего предложения.
Сейчас, через сорок четыре года, в экономике и социальной статистике ничего не изменилось, если не считать некоторых косметических поправок, учитывающих присутствие в мире лишь рядовой случайности, — и при этом нобелевские медали раздаются направо-налево. Появилось несколько статей с "доказательствами" неправоты Мандельброта, авторы которых не понимают того, о чем постоянно твержу я: выискивая периоды, лишенные редких событий, всегда можно получить данные, "подтверждающие", что стоящий за ними процесс — из разряда гауссовых. Точно так же можно выбрать день, в который не произошло убийств, и использовать его как "свидетельство" нашей безгрешности. Я повторю, что из-за асимметрии, свойственной индукции, проще оспорить невиновность, чем признать ее, и по той же причине проще оспорить гауссиану, чем принять. Фрактал же, напротив,
Степень неравенства будет одной и той же для всех шестнадцати секций графика. В гауссовом мире неравенство в богатстве (или любой другой количественной величине) убывает вблизи верхней границы, так что между миллиардерами должно быть большее равенство, чем между миллионерами, а между миллионерами — большее равенство, чем между представителями среднего класса. Это отсутствие равенства на всех уровнях состоятельности и есть, по сути, статистическое самоподобие.
труднее оспорить, чем принять. Почему? Потому что одно-единственное событие может опровергнуть утверждение, что перед нами — гауссиана.
В итоге четыре десятилетия тому назад Мандельброт вручил экономистам и пекущимся о своем резюме филистерам жемчуг, который они отвергли, потому что его идеи были
для них слишком хороши. Именно это самое и называют margaritas ante porcos — бисер перед свиньями.
В оставшейся части главы я расскажу, почему для объяснения большой доли случайностей мною предлагаются именно мандельбротовы фракталы, не обязательно в их точном употреблении. Фракталы — это вариант по умолчанию, приближение, основа. Они не решают проблему Черного лебедя и не превращают всех Черных лебедей в явления предсказуемые, но они значительно смягчают проблему Черного лебедя, делая эпохальные события постижимыми. (Черные лебеди становятся Серыми. Почему Серыми? Потому что чистая белизна есть только в гауссиане. Подробности позже.)
ЛОГИКА ФРАКТАЛЬНОЙ СЛУЧАЙНОСТИ (С ПРЕДУПРЕЖДЕНИЕМ)*
Я показал в таблицах возрастания богатства в главе 15 логику фрактального распределения: если богатство удваивается с i (минимум) до 2 (минимум) миллионов, доля людей с таким капиталом урезается вчетверо, то есть налицо экспонента 2. При экспоненте i доля такого же богатства уменьшилась бы вдвое. Экспонента — это показатель степени, поэтому широко распространен термин степенной закон. Будем называть количество случаев, перекрывающих некий уровень, превышением: превышение 2 миллионов — это количество людей с состоянием больше 2 миллионов. Одно из основных свойств этих фракталов (или еще один способ выразить их основное свойство — масштабируемость) заключается в том, что отношение двух превышений будет отношением их ниж-
* Нетехнари могут пропустить текст отсюда до конца главы.
14-10770
них порогов*, возведенным в степень, равную минус экспоненте.
Проиллюстрируем это. Положим, вы "думаете", что только 96 названий книг в год разойдутся тиражом более 250 ооо экземпляров (как это было в прошлом году), и, "по-вашему", экспонента должна быть примерно 1,5. Простым умножением 96 на (500 ооо / 250 ooo) I,5 вы можете определить, что примерно 34 названия разойдутся тиражом более 500 ооо экземпляров. Пойдя далее, мы установим, что около 8 книг будут проданы в количестве более миллиона экземпляров: 96 х (i 000 ооо / 250 ооо)-15.
Таблица № 2. Предполагаемые экспоненты для разных явлений
Явление
Предполагаемая экспонента (грубое приближение)
Частота употребления слов Количество посещений веб-сайтов Количество книг, проданных в США Принятые телефонные звонки Сила землетрясений Диаметр лунных кратеров Интенсивность вспышек на Солнце Интенсивность войн Чистый капитал американцев Количество людей с данной фамилией Население американских городов Движения рынка Размеры компаний Количество людей, погибших
1,2 1,4 1,5 1,22 2,8 2,14 0,8 0,8 1,1
1,3
3 (или меньше) 1,5
2 (но, возможно, гораздо меньше)
при терактах
Источник: МЭ.Дж. Ньюман (2005) и собственные вычисления автора.
Давайте рассмотрим разные выверенные экспоненты для
всевозможных явлении.
*
Симметрия позволяет нам брать за точку отсчета и верхние пороги.
Но прежде всего следует предупредить, что эти экспоненты ни в коем случае не точные показатели. Почему, мы увидим через минуту, но пока отметим, что этих параметров мы не наблюдаем; мы их просто угадываем или вводим для статистики, и поэтому временами бывает трудно узнать истинные параметры — если они вообще существуют. Сначала поговорим о практической роли экспоненты.
Таблица 3. Значение экспоненты
Экспонента
Доля верхнего 1 %
Доля верхних 20%
99,99%"
99,99%
1,1
66%
86%
1,2
47%
76%
1,3
34%
69%
1,4
27%
63%
1,5
22%
58%
, 2
10%
45%
2,5
6%
38%
4,6%
34%
* Понятно, что 100% в конечной выборке не наблюдается.
Таблица 3 иллюстрирует влияние крайне невероятного. Она показывает долю верхнего i процента и верхних 2о процентов в общей сумме. Чем меньше экспонента, тем выше эта доля. Но посмотрите, сколь чувствителен процесс: переход от i,i к 1,з разом уменьшает процент с 66 до 34. Разница в экспоненте всего лишь в 0,2 резко меняет результат — и ведь такую разницу способна дать простая ошибка в расчетах. А разница-то принципиальная: только подумайте, что мы точно не знаем, чему равен показатель, потому что не можем измерить его непосредственно. Единственное, что нам остается, — это делать прикидки, основываясь на прошлых данных, или полагаться на теории, которые позволяют по
строить некую модель, которая, в свою очередь, позволяет строить некие предположения. Но у таких моделей могут оказаться скрытые изъяны, из-за чего опасно безоговорочно применить их к реальности.
Итак, помните, что экспонента 1,5 — это приближение, что ее трудно вычислить, что она не свалится на вас с неба, по крайней мере на счет раз-два, и что вы столкнетесь с гигантской погрешностью. Вы обнаружите, что число книг, проданных в количестве более чем миллион экземпляров, не обязательно будет равно 8 — их может быть целых 20 или всего лишь 2.
Еще важнее то, что применение именно этой экспоненты допустимо начиная с некоторого числа, называемого "переходным". Это могут быть 200 ооо книжных экземпляров, а то и 400 ооо. Точно так же у богатства, скажем, выше 600 миллионов долларов, когда неравенство растет, и ниже этой черты — свойства разные. Как узнать, где точка перехода? Это проблема. Мои коллеги и я обработали примерно 20 миллионов финансовых данных. Набор данных у нас у всех был один, но мы так и не пришли к согласию в том, какова должна быть экспонента. Мы понимали, что данные подчинены действию фрактального степенного закона, но, как оказалось, точное число высчитать невозможно. Однако знание того, что распределение масштабируемо и фрактально, давало нам право действовать и принимать решения.
Дата добавления: 2015-10-13; просмотров: 146 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
ПЛАТОНИЗМ ТРЕУГОЛЬНИКОВ | | | Проблема верхней границы |