Читайте также: |
|
Наиболее часто температуру рабочих тел измеряют жидкостными стеклянными термометрами (в основном ртутными), электрическими термометрами сопротивления, термоэлектрическими термометрами и пирометрами излучения.
Ртутные термометры предназначены для измерения температуры в пределах от -35 до +800°С. В котельных установках пользуются техническими и лабораторными термометрами с ценой деления шкалы 0,5÷2°С.
Достоинства: наглядность показаний, простота установки и легкость производства отсчетов.
Недостатки: хрупкость, большая тепловая инерция, невозможность измерения в труднодоступных местах.
Измерение температуры электрическими термометрами сопротивления основано на свойстве проводников и полупроводников изменять свое сопротивление в зависимости от температуры. Основанный на данном принципе измерительный прибор состоит из тепловоспринимаемого элемента (термометра сопротивления), вторичного прибора для измерения электросопротивления, источника тока и соединительных проводов. Используется платина (-200÷+750°С), медь (-50÷+180°С). Платиновые термометры сопротивления позволяют измерять температуру с погрешностью ±0,1°С, а медные – до ±1°С.
Недостатки: большая тепловая инерция, необходимость применения сложных вторичных измерительных приборов, использование постоянного источника тока, невозможность установки в взрывоопасных местах.
Терморезисторы (рисунок) обладают более значительным по сравнению с металлами (в 5÷10 раз) коэффициентом электрического сопротивления и большим удельным сопротивлением. Датчики более компактны. Тепловая инерция составляет секунды, т.е. меньше инерции других тепловых приборов.
Недостатки: необеспеченность их взаимозаменяемости, необходимость их подбора и индивидуальной настройки элементов схемы в случае применения в измерительных приборах.
Термопары Термоэлектрический термометр состоит из термопары (рисунок) вторичного прибора (потенциометра) и соединительных проводов.
Преимущества: малые размеры и малая тепловая инерция. Диапазон температур от -200 до +2000°С. Позволяют определить температуру в точке сопротивления со средой.
Основным недостатком термопар является сравнительно небольшая по значению создаваемая ими термоэдс, особенно в диапазоне от 0÷100°С. Ввиду этого для измерения невысоких температур с высокой точностью применяют термобатареи (рисунок) и диффузионные термопары (рисунок).
Для регистрации используются потенциометры много точечные или одноточечные типов КСП, ЭПП-09 и ПС1.
Пирометры: по принципу действия они разделяются на оптические, радиационные и фотоэлектрические.
Измерение оптическим пирометром основано по методике сравнения яркости излучения видимых лучей нагретого тела при длине волны 0,65 мкм с яркостью излучения нити накаливания пирометрической лампы, регистрируемой о руки. Оптический пирометр типа ОППИР (рисунок)
Шкалы оптических, радиационных и фотоэлектрических пирометров градуируются по излучению абсолютно черного тела соответственно в градусах яркостной, радиационной и цветовой температуры.
Эти методы измерения не обеспечивают высокой точности измерения температуры и поэтому применяются для общей оценки режимов работы топочных устройств (для измерения температуры факела). Диапазон измерения температур с помощью ОППИРа от 800 до 2000°С.
РАПИР – радиационные пирометры (рисунок)
В радиационных пирометрах световые и тепловые лучи нагреваемого тела направляются при помощи собирательной линзы или отражательного зеркала на теплочувствительный элемент (термобатарею или термометр сопротивления), соединенный с милливольтметром или потенциометром.
Применение радиационных пирометров требует использования специальных стационарных приспособлений для защиты прибора от чрезмерного нагрева, выброса пламени и пыли из топки. Требуется установка специальных палильных трубок, на дно которых визируется телескоп прибора. Трубки изготавливают из карборунда или карбофракса.
Дата добавления: 2015-09-02; просмотров: 36 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Контрольно-измерительными приборами | | | Измерение расхода |