Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Жизнь как ходовой товар

Читайте также:
  1. Comrades (Товарищи; Великобритания, 1987) художественный фильм
  2. D-2600 спасает Гитлеру жизнь
  3. III. Иисус и наша молитвенная жизнь
  4. III. Усилие ради сбережения усилий. Проблема сбереженного усилия. Изобретенная жизнь
  5. Quot;ЗАВТРА". Весь это "местный колорит" может создать определенные проблемы, но с какого-то момента ваша жизнь в Норвегии стала просто невыносимой. Почему?
  6. V. Жизнь как созидание. Техника и желания.
  7. V. Новая жизнь

Стремясь запатентовать, использовать в своих интересах и монополизировать все аспекты биотехнологии, ведущие агрохимические корпорации скупили семеноводческие и биотехнологические фирмы, после чего стали преподносить себя как «корпорации, занимающиеся науками о жизни» [ПО]. Слияние корпораций и превращение их в гигантские конгломераты под вывеской «наук о жизни» приводит к быстрому стиранию традиционных границ между фармацевтической, агрохимической и биотехнологической промышленностью. Так, «Сиба-Гейги» слилась с «Сандоз», образовав «Новартис»; «Хёхст» и «Рон-Пуленк» превратились в «Авентис», а «Монсанто» владеет теперь несколькими крупными семеноводческими компаниями.

Что есть общего у всех подобных «жизненнонаучных» компаний, так это узколобое понимание жизни, основанное на том заблуждении, что она может быть поставлена под человеческий контроль. При этом совершенно игнорируется самая суть жизни — динамика ее самовоспроизводства и самоорганизации, а живые организмы рассматриваются как машины, которыми можно управлять извне, патентовать и продавать как промышленные ресурсы. Сама жизнь превратилась в ходовой товар.

Как напоминает нам Вандана Шива, слово «ресурс» происходит от латинского resurgere — «возрождаться». Древнее значение этого термина подчеркивает, что природные ресурсы, как и все живое, по своей сути самовозобновляемы. Это глубочайшее понимание живого попросту отбрасывается новоиспеченными «жизненнонаучными» корпорациями, препятствующими самообновлению жизни в стремлении превратить природные ресурсы в доходное промышленное сырье. Этой цели они пытаются достичь путем генетических манипуляций (в том числе «технологий самоубийства») [111] и патентования, вступающего в резкий конфликт с проверенными временем сельскохозяйственными практиками, которые отдают должное естественным жизненным циклам.

В традиционном понимании патент есть исключительное право на использование и продажу изобретения, поэтому представляется странным, что биотехнические компании имеют сегодня возможность патентовать живые организмы, от бактерий до человеческих клеток. Достигнуто это было при помощи поразительной научной и юридической ловкости рук [112]. Патентование живых форм стало общепринятой практикой в 1960-х годах, когда селекционерам были даны права собственности на новые сорта цветов, полученные в результате человеческого вмешательства. Мировому юридическому сообществу понадобилось менее двадцати лет, чтобы перейти от этого, вроде бы безобидного, патентования цветов к монополизированию всего живого.

Следующим шагом в этом направлении стало патентование специально выведенных кормовых сортов растений, а вскоре законодатели и разработчики регулирующих норм заявили, что нет никаких теоретических оснований препятствовать распространению промышленного патентования также на животных и микроорганизмы. Соответственно, в 1980 году Верховный суд США принял судьбоносное решение о том, что генетически модифицированные организмы могут быть запатентованы.

Во всех этих юридических аргументах как правило полностью игнорируется тот факт, что патенты на улучшенные сорта цветов, с которых все началось, не распространялись на исходный материал, объявленный «общим достоянием человечества» [113]. Нынешние же патенты, выдаваемые биотехнологическим компаниям, охватывают не только методы выделения, определения и переноса ДНК-последовательностей, но и сам генетический материал. Более того, существующие национальные законы и международные договоры, явно не допускающие патентования основных природных ресурсов, таких, как продукты питания и лекарства растительного происхождения, изменяются сегодня в соответствии с корпоративными воззрениями на жизнь как на предмет выгодной торговли.

В последние годы патентование живых форм породило новую разновидность «биопиратства». Охотники за генами рыщут по странам южного полушария в поисках ценных генетических ресурсов, таких, как семена особых сельскохозяйственных культур или лекарственных растений. В этом им нередко помогает местное население, доверчиво делясь как материалами, так и накопленным опытом. А потом эти ресурсы попадают в биологические лаборатории Севера, где их выделяют, генетически отождествляют и... патентуют [114].

Правовой основой этой эксплуататорской практики является данное ВТО узкое определение прав на интеллектуальную собственность, согласно которому знание может быть запатентовано, только если оно оформлено традиционным для западной науки образом. Как отмечает Вандана Шива, «это исключает из рассмотрения все виды знаний, идей и новшеств, возникающих в неформальных интеллектуальных сообществах — среди сельских фермеров, обитателей джунглей и даже студентов университетов» [115]. Эксплуатация жизни, таким образом, идет еще дальше, распространяясь не только на живые организмы, но и на народные знания и коллективные изобретения. «Лишенное уважения к другим биологическим видам и человеческим культурам, — заключает Шива, — законодательство по вопросам интеллектуальной собственности представляет собой моральное, экологическое и культурное насилие».

Отпор

В последние годы порожденные генной инженерией угрозы человеческому здоровью, равно как и связанные с ней глубинные социальные, экологические и этические проблемы стали более чем очевидны. Это привело к быстрому росту глобального движения протеста против подобных технологий [116]. В ответ на широкую общественную обеспокоенность вопросами целесообразности и безопасности применения генной инженерии многочисленные здравоохранительные и экологические организации призвали к мораторию на коммерческое распространение генетически модифицированных организмов [117]. В их обращениях также содержится призыв запретить патентование живых организмов и их компонентов и придерживаться «принципа предосторожности», отраженного в международных договорах, заключенных после Саммита Земли 1992 года. Известный как 15-й пункт декларации, принятой в Рио-де-Жанейро, этот принцип гласит: «В тех случаях, когда существует угроза серьезного или необратимого ущерба, отсутствие ее полного научного обоснования не должно использоваться в качестве причины для отсрочки принятия экономически эффективных мер по предупреждению ухудшения состояния окружающей среды».

Смещение акцента в молекулярной биологии со структуры генетических последовательностей на организацию генетических и эпигенетических сетей, с генетических программ на эмергентные свойства в числе прочего проявилось в том, что призывы к радикально новому подходу к биотехнологиям исходят сегодня не только от экологов, медиков и обеспокоенных граждан, но все больше от ведущих генетиков — свидетельства тому приведены и в настоящей главе. Благодаря замечательным открытиям, сделанным в ходе выполнения проекта «Геном человека», дискуссии о смене существующей парадигмы выплеснулись и на страницы научно-популярной прессы. Я придаю большое значение, например, тому факту, что в специальном научном разделе газеты «Нью-Йорк тайме», посвященном результатам проекта «Геном человека», человеческий геном был впервые изображен в виде сложной функциональной сети (см. рисунок).

Геном человека, изображенный в виде функциональной сети. Рисунок Стива Дьюэнза, «Нью-Йорк тайме», 13 февраля 2001 г.

Если наши ученые, инженеры, политики и руководители корпораций станут исповедовать системные взгляды на жизнь, окажется возможным появление биотехнологии совершенно иного рода. Она будет стремиться учиться у природы, а не управлять ею; видеть в ней учителя, а не просто источник сырья. Вместо того чтобы торговать паутиной жизни, мы будем уважать ее как основу нашего существования.

Эта новая биотехнология больше не будет генетически изменять живыеорганизмы. Вместо этого она станет применять генноинженерные методики для изучения тонких «замыслов» природы, с тем чтобы использовать их в качестве образцов для новых технологий. Разрабатывая новые материалы и технологические процессы, мы станем применять почерпнутые у растений, животных и микроорганизмов экологические знания, которые позволят нам создавать нетоксичные волокна, пластмассы и химикаты, полностью разлагающиеся естественным образом и допускающие многократное повторное использование.

Это будут биотехнологии в новом значении этого слова, поскольку основой материальных структур живого являются белки, которые мы можем производить только при помощи ферментов, поставляемых живыми организмами. Разработка таких новых биотехнологий будет представлять собой сложнейшую интеллектуальную задачу, ведь мы до сих пор не знаем, как природа на протяжении миллиардов лет создала «технологии», намного превосходящие все придуманное людьми. Каким образом мидии производят клей, прилипающий к чему угодно в воде? Как шелкопряды создают нить в пять раз прочнее стальной? Как моллюск морское ушко изготовляет раковину, которая вдвое тверже нашей высокотехнологичной керамики? Как удается этим существам создавать свои чудесные материалы в воде, при комнатной температуре, без шума и каких-либо ядовитых отходов?

Поиск ответов на эти вопросы и использование их для разработки навеянных природой технологий могло бы стать великолепной программой исследований для ученых и инженеров будущих десятилетий. Собственно говоря, такие работы уже начались. Они составляют часть новой инженерно-конструкторской области, называемой «биомимикрией» или, более общо, «экодизайном». Недавно эти работы вызвали всплеск оптимизма по поводу шансов человечества на устойчивое будущее [118].

В своей книге «Биомимикрия» популяризатор науки Джанин Беньюс предлагает нам совершить увлекательное путешествие по многочисленным лабораториям и экспедиционным базам, где ученые и инженеры различных специальностей скрупулезно анализируют химическую и молекулярную структуру самых сложных естественных материалов, чтобы затем использовать их в качестве образца для наших биотехнологий [119]. Они обнаруживают, что многие из наших ключевых технологических проблем уже решены природой изящным, эффективным и экологически устойчивым образом. Эти решения исследователи пытаются обратить на пользу человечеству.

Ученые Вашингтонского университета изучили молекулярное строение и процесс формирования гладкой внутренней поверхности раковины морского ушка. Она отличается необычайной твердостью и утонченными разноцветными спиральными структурами. Ученым удалось воспроизвести процесс ее формирования при комнатной температуре и получить прочный прозрачный материал, который может стать идеальным покрытием для ветровых стекол сверхлегких электромобилей. Немецкие ученые воспроизвели микроструктуру самоочищающейся поверхности листа лотоса и создали краску для стен, имеющую аналогичные свойства. Специалисты по биологии и биохимии морей в течение многих лет изучали уникальные химические процессы, при помощи которых мидии синтезируют вещество, позволяющее им приклеиваться к любой поверхности под водой. Сейчас эти ученые исследуют возможность применения полученных данных в хирургии для скрепления связок и мышечной ткани в жидкой среде. В нескольких лабораториях совместными усилиями физиков и биохимиков исследовались сложные структуры и процессы фотосинтеза. Полученные данные ученые надеются использовать при разработке новых типов солнечных батарей.

В то же время, однако, многие генетики, как в биотехнологических компаниях, так и в научном мире, по-прежнему цепляются за «основное положение» генетического детерминизма. Возникает вопрос: действительно ли эти ученые верят в то, что наше поведение определяется генами, а если нет, то что заставляет их лицемерить?

Мои беседы на эту тему с молекулярными биологами показывают, что существует несколько причин того, почему ученые считают необходимым поддерживать догму генетического детерминизма несмотря на множество противоречащих ей свидетельств. В промышленности ученым обычно платят за разработку конкретных, четко определенных проектов; они работают под жестким контролем, и им запрещено обсуждать не имеющие отношения к делу выводы из полученных результатов. На этот счет они подписывают обязательства о неразглашении. Особенно сильному давлению, вынуждающему придерживаться официальной доктрины, подвергаются сотрудники биотехнологических компаний.

Что же до представителей академической науки, то они находятся под давлением иного рода, которое, однако, не менее сильно. Из-за огромной дороговизны генетических исследований биологические институты все чаще заключают договоры с биотехнологическими компаниями, получая от них значительные гранты, которые и определяют направление и характер исследований. Как отмечает Ричард Штроман: «Биологов-ученых уже невозможно отличить от сотрудников корпораций; теперь за сотрудничество этих двух некогда конфликтовавших секторов люди получают премии» [120].

Биологи чаще всего формулируют свои заявки на гранты в терминах генетического детерминизма, так как хорошо знают, за что можно получить деньги. Своим инвесторам они обещают, что новые знания о генетической структуре позволят добиться новых результатов, хотя им прекрасно известно, что научные достижения всегда неожиданны и непредсказуемы. Такому двойному стандарту они обучились еще студентами и продолжают исповедовать его в течение всей академической карьеры.

Помимо этих очевидных обстоятельств существует целый ряд более тонких когнитивных и психологических барьеров, мешающих биологам стать на сторону системного взгляда на жизнь. Господствующей парадигмой в их образовании по-прежнему остается редукционизм, поэтому им зачастую нелегко мыслить категориями самоорганизации, сетей или эмергентных свойств. Да и генетические исследования даже в рамках редукционистской парадигмы могут быть чрезвычайно захватывающими: так, картирование геномов представляет собой удивительнейшее достижение, которое и не снилось ученым еще всего лишь поколение тому назад. Поэтому понятно, что многие генетики оказываются настолько увлечены своей работой (к тому же неплохо финансируемой), что совершенно не задумываются о ее более широком контексте.

Наконец, не следует забывать, что занятие наукой — это по природе своей коллективная деятельность. Ученым крайне необходимо принадлежать к своему интеллектуальному сообществу, и им весьма непросто возвысить против него голос. На это с трудом отваживаются даже маститые ученые, сделавшие великолепную карьеру и отмеченные самыми престижными наградами.

Но несмотря на эти барьеры, общемировое противодействие патентованию, рекламированию и распространению генетически модифицированных организмов, а также обнаружившиеся в последнее время изъяны в концептуальных основаниях генной инженерии свидетельствуют о том, что некогда величественное здание генетического детерминизма рушится. Позволю себе еще раз процитировать Эвелин Фокс Келлер: «Примат гена как ключевой концепции объяснения биологической структуры и функции характерен в гораздо большей степени для XX, чем XXI века» [121]. Становится все более очевидным, что биотехнология подходит сегодня к научному, философскому и политическому рубежу.


Дата добавления: 2015-09-03; просмотров: 62 | Нарушение авторских прав


Читайте в этой же книге: Экологическое воздействие | Трансформация культуры | Развитие генной инженерии | Устойчивость и изменчивость | Трудности основного положений | Что такое ген? | Гены и болезни | Биология и этика клонирования | Биотехнология в сельском хозяйстве | Экологическая альтернатива |
<== предыдущая страница | следующая страница ==>
Опасности сельскохозяйственной генной инженерии| Состояние нашего мира

mybiblioteka.su - 2015-2024 год. (0.008 сек.)