Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Вопрос 31

Общая характеристика растворов.

Растворами называются гомогенные системы переменного состава, в которых растворенное вещество находится в виде атомов, ионов или молекул, равномерно окруженных атомами, ионами или молекулами растворителя.
Любой раствор состоит по меньшей мере из двух веществ, одно из которых считается растворителем, а другое - растворенным веществом. Растворителем считается компонент, агрегатное состояние которого такое же, как и агрегатное состояние раствора. Деление это довольно условно, а для веществ, смешивающихся в любых соотношениях (вода и ацетон, золото и серебро), лишено смысла. В этом случае растворителем считается компонент, находящийся в растворе в большем количестве.
Состав растворов может меняться в довольно широких пределах, в этом растворы сходны с механическими смесями. По другим признакам, таким как однородность, наличие теплового эффекта и окраски растворы сходны с химическими соединениями.
Растворы могут существовать в газообразном, жидком или твердом агрегатном состоянии. Воздух, например, можно рассматривать как раствор кислорода и других газов в азоте; морская вода - это водный раствор различных солей в воде. Металлические сплавы относятся к твердым растворам одних металлов в других.
Растворение веществ является следствием взаимодействия частиц растворяемого вещества и растворителя. В начальный момент времени растворение идет с большой скоростью, однако по мере увеличения количества растворенного вещества возрастает скорость обратного процесса - кристаллизации. Кристаллизацией называется выделение вещества из раствора и его осаждение. В какой-то момент скорости растворения и осаждения сравняются и наступит состояние динамического равновесия.
Раствор, в котором вещество при данной температуре уже больше не растворяется, или иначе, раствор, находящийся в равновесии с растворяемым веществом, называется насыщенным. Для большинства твердых веществ растворимость в воде увеличивается с повышением температуры. Если раствор, насыщенный при нагревании, осторожно охладить так, чтобы не выделялись кристаллы, то образуется пересыщенный раствор. Пересыщенным называется раствор, в котором при данной температуре содержится большее количество растворенного вещества, чем в насыщенном растворе. Пересыщенный раствор крайне нестабилен и при изменении условий (энергичное встряхивание или внесение активных центров кристаллизации - кристалликов соли, пылинок) образуется насыщенный раствор и кристаллы соли.
Раствор, содержащий меньше растворенного вещества, чем насыщенный, называется ненасыщенным раствором.

6.2. ПРОЦЕСС ОБРАЗОВАНИЯ РАСТВОРОВ. ТЕПЛОВЫЕ ЭФФЕКТЫ ПРИ РАСТВОРЕНИИ

Растворение - сложный физико-химический процесс. В зависимости от природы растворителя и растворенного вещества преобладает либо одна, либо другая его составляющая. Чаще физический процесс предшествует химическому. Д.И. Менделеев, обосновывая теорию растворов, впервые выдвинул идею о существовании в них определенных химических соединений.

При химическом растворении образование раствора происходит в результате реакции между растворенным веществом и растворителем:

SO3 + H2O = H2SO4

Часто растворяемые вещества в ходе реакции переходят в другие соединения, поэтому в итоге образуется раствор продуктов реакции:

2Na + 2H2O = 2NaOH(р) + H2

Cl2 + H2O = HOCl + HCl

Иногда сам растворитель (в данном случае - вода) непосредственно не участвует в реакции:

Mg + 2HCl = MgCl2(р) + H2

Однако, на практике растворы H2SO4, NaOH, MgCl2 и т.д. готовят либо разбавлением более концентрированных растворов указанных веществ (растворы H2SO4), либо непосредственным растворением NaOH(т), MgCl2(т) в растворителе.

Подобные процессы приводят к образованию растворов молекулярного или ионного типа. Если растворение не сопровождается такой выраженной реакцией, как при химическом растворении, то процесс ограничивается взаимодействием молекул растворяемого вещества с молекулами растворителя, который называют сольватацией. Продукты взаимодействия называют сольватами (от лат. solvere - растворять). Если в качестве растворителя используют воду, то процесс называют гидратацией, а продукты взаимодействия - гидратами.

Образование сольватов возможно различными путями в зависимости от природы растворителя и растворяемого вещества. Так, если растворенное вещество имеет ионную структуру, то молекулы растворителя удерживаются у образовавшегося иона за счет электростатических сил взаимодействия. В обычных условиях способность иона гидратироваться зависит от его природы, заряда, размера, строения электронной оболочки и концентрации раствора. Гидратирующая способность ионов падает в ряду:

Al3+ > Cr3+ > Be2+ > Cd2+ > Zn2+ > Mg2+ > Na+.

Гидратация изменяет как свойства растворителя, так и свойства иона. Например, гидратация снижает электрохимическую подвижность (направленное перемещение под действием электрического тока) ионов. Так, электропроводность расплава LiCl выше электропроводности CsCl. В водных же растворах из-за большей гидратирующей способности Li+ по сравнению с Cs+ электропроводность указанных солей имеет противоположный характер.

Под влиянием гидратации деформируются электронные оболочки ионов, что в большинстве случаев приводит к изменению их окраски:

Cu2+ - белый, [Cu(H2O)4]2+ - голубой,

Co2+ - синий, [Co(H2O)6]2+ - розовый,

Ni2+ - желтый, [Ni(H2O)6]2+ - зеленый и т.п.

Гидратированные ионы обладают большей термодинамической устойчивостью, чем ионы, лишенные гидратной оболочки. Часто образующиеся гидраты могут быть настолько прочны, что их можно выделить из раствора в кристаллическом состоянии. Такие кристаллы, содержащие в связанном виде молекулы воды, называют кристаллогидратами (в общем случае - кристаллосольватами), а входящую в их состав воду - кристаллизационной. Например: CuSO4·5H2O, Na2SO4·10H2O, Ni(NO3)2·6H2O и др. Кристаллогидраты сохраняют окраску, характерную для соответствующих растворов. Это служит доказательством существования в растворе аналогичных гидратных комплексов.

При растворении соединений с ионной кристаллической решеткой, например, NaCl в воде процесс гидратации начинается с ориентации диполей воды относительно ионов кристаллической решетки. Когда энергия связи между гидратируемым ионом и молекулами воды становится больше, чем энергия связи между ионами в решетке кристалла, гидратированный ион переходит из кристалла в раствор и происходит постепенное разрушение всего кристалла.

С термодинамической точки зрения вещество может растворяться в растворителе (ж) самопроизвольно при постоянном давлении и объеме, равномерно распределяясь в нем, если в результате этого процесса свободная энергия системы уменьшается:

 G = ( H - T·  S) < 0

Если вещество переходит из упорядоченного (ж) или (т) состояния в раствор, в котором термодинамическая вероятность состояния его частиц значительно больше, то энтропия системы увеличивается:  S>0. Это способствует растворению вещества. Вклад энтропийного фактора будет особенно ощутим при повышенных температурах, поэтому растворимость твердых и жидких веществ при нагревании, как правило, увеличивается


Дата добавления: 2015-08-13; просмотров: 81 | Нарушение авторских прав


Читайте в этой же книге: Вопрос 19 | Вопрос 20 | Вопрос 21 | Вопрос 22 | Вопрос 23 | Вопрос 24 | Вопрос 26 | Вопрос 27 | Вопрос 28 | Вопрос 29 |
<== предыдущая страница | следующая страница ==>
Вопрос 30| Вопрос 32

mybiblioteka.su - 2015-2024 год. (0.008 сек.)