Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Взаимодействие вода — растворенное вещество

Читайте также:
  1. II. Взаимодействие Сторон
  2. IV. ВЗАИМОДЕЙСТВИЕ С СУДАМИ И ОРГАНАМИ ЮСТИЦИИ
  3. V. Взаимодействие Совета с ученым советом университета
  4. VI. Взаимодействие с избирательными комиссиями других субъектов Российской Федерации
  5. Аналитический алгоритм построения прогнозных версий, обеспечивающих коммуникативное взаимодействие
  6. Белое вещество
  7. В 1928 вместе В. Гейзенбергом ввел в физику обменное взаимодействие.

При добавлении различных веществ к воде изменяются свойства как самого вещества, так и воды. Гидрофильные вещества взаимодействуют с водой путем ион-дипольного или диполь-дипольного механизма, вызывая изменения в структуре воды, ее подвижности, а также в структуре и реакционной способности гидрофильных веществ. Гидрофобные группы добавленных веществ взаимодействуют с близлежащей водой слабо, предпочитая неводное окружение. Молекулы около гидрофобных групп становятся более упорядоченными, что приводит к уменьшению энтропии. Чтобы уменьшить контакт с водой, гидрофобные группы агрегируются. Как уже говорилось, этот процесс известен как гидрофобное взаимодействие.

Взаимодействие воды с ионами и ионными группами. Вода, взаимодействующая с ионами и ионными группами, является наиболее прочно связанной в пищевых продуктах. Нормальная структура чистой воды (основанная на водородных связях тетраэдрическая конфигурация) нарушается при добавлении диссоциирующих веществ. Для простых неорганических ионов, которые не обладают донорными или акцепторными местами для образования водородных связей, связь просто полярна. Простейший пример — гидратированные ионы хлорида натрия. Вода в мультислое существует в структурно разрушенном состоянии из-за конкурирующего влияния, с одной стороны, монослоя, с другой — внешней массы воды.

Способность ионов изменять структуру воды тесно связана с силой электрического поля иона. Малые и (или) многовалентные (главным образом, положительные) ионы, такие как Li+, Na+, Н3О+, Ca2+, Ba2+, Mg2+, А13+, F-, OH-, имеют сильное электрическое поле и являются образова-телями сетчатой структуры. Около каждого из этих ионов расположено от 4 до 6 молекул воды. Связанная вода менее лабильна и обладает более

плотной структурой по сравнению с чистой водой (см. рис. 10.4).


Рис. 10.4. Структура связанной воды

Большие и моновалентные ионы (главным образом, отрицательно заряженные ионы и большие положительные ионы), такие как К+, Cs+, NH4+, C1-, Br-, I-, NO

- 3

, ВrО

- 3

, IO

- 3

и С1О

- 4

, имеют относительно слабое электрическое поле и являются разрушителями сетчатой структуры, хотя для К+ этот эффект очень слаб.

Благодаря различной способности ионов гидратироваться, изменять водную структуру, влиять на диэлектрическую постоянную водной среды и толщину двойного электрического слоя около коллоидов, они сильно воздействуют на суспендированные и другие растворенные вещества в среде. Поэтому, например, конформация белков и стабильность коллоидов сильно зависят от вида и количества присутствующих ионов.

Взаимодействие воды с нейтральными группами, обладающими способностью образовывать водородные связи. Водородные связи вода — растворенное вещество являются более слабыми, чем при вода — ион взаимодействиях. Тем не менее, вода, связанная посредством водородных связей с растворенным веществом, может быть классифицирована как "органически связанная" или "близлежащая" и должна проявлять пониженную подвижность по сравнению с водой в массе раствора (водной фазы).

Можно ожидать, что вещества, способные к образованию водородных связей, не повышают или, по крайней мере, не разрушают нормальную структуру чистой воды. Однако в ряде случаев отмечается ориентация водородных связей, отличная от нормальной воды.

Водородные связи воды образуются с различными группами (гидроксил-, амино-, карбонил-, амид- или имино-). Например, вода образует водородные связи с двумя видами функциональных групп белков. Эти связи могут быть как в одной макромолекуле между различными группами, так и между разными макромолекулами:

 

Взаимодействие вода — неполярное вещество. В системе вода — неполярное вещество важны два аспекта структурных образований: образование клатратных гидратов и гидрофобные взаимодействия в белках.

Клатратные гидраты являются соединениями включения, то есть это соединения, имеющие молекулу-"хозяина", образующуюся за счет водородных связей, и молекулу-"гостя". Образования такого типа имеют место в биологических материалах.

"Гости" в клатратных гидратах являются низкомолекулярными соединениями, а "хозяин" представляет собой "сетку" из 20—74 водных молекул.

Типичные "гости" — это низкомолекулярные углеводороды, галогенуглеводороды, диоксид углерода, этиленоксид, этиловый спирт, короткоцепочные первичные, вторичные и третичные амины, алкил-аммоний. Взаимодействие между водой и "гостем" часто обусловлено слабыми ван-дер-ваальсовыми силами, но может иметь место и электростатическое взаимодействие.

Клатратные гидраты имеют важное значение, т. к. влияют на конфор-мацию, реакционноспособность и стабильность таких молекул, как белки.

Гидрофобные взаимодействия в водном окружении также важны, т. к. примерно 40% общих аминокислот в большинстве белков имеют неполярные группы. Неполярные группы других компонентов, таких как спирты, жирные кислоты, свободные аминокислоты, также могут участвовать в гидрофобных взаимодействиях. Эти взаимодействия являются слабыми, по силе они примерно такие же, как силы Ван-дер-Ваальса. Гидрофобные взаимодействия важны для четвертичной структуры многих белков, поэтому вода (и водная структура) играет важную роль в конформации белка.

468:: 469:: 470:: Содержание

470:: 471:: Содержание


Дата добавления: 2015-08-13; просмотров: 82 | Нарушение авторских прав


Читайте в этой же книге: Подслащивающие вещества | Ароматизаторы | Пищевые добавки, усиливающие и модифицирующие вкус и аромат | ПИЩЕВЫЕ ДОБАВКИ, ЗАМЕДЛЯЮЩИЕ МИКРОБИОЛОГИЧЕСКУЮ И ОКИСЛИТЕЛЬНУЮ ПОРЧУ ПИЩЕВОГО СЫРЬЯ И ГОТОВЫХ ПРОДУКТОВ | Консерванты | Антибиотики | Пищевые антиокислители | БИОЛОГИЧЕСКИ АКТИВНЫЕ ДОБАВКИ | Физические свойства воды и льда | Диаграмма состояния воды |
<== предыдущая страница | следующая страница ==>
Строение молекулы и свойства воды| Рассмотрим некоторые примеры.

mybiblioteka.su - 2015-2025 год. (0.007 сек.)