Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Механические и технологические свойства конструкционных материалов

Читайте также:
  1. II. КОМПЛЕКТ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ
  2. А. ХАРАКТЕРНЫЕ СВОЙСТВА КАЖДОГО ОРГАНА
  3. Автоматизированные технологические линии
  4. Автономные и неавтономные динамические системы. Свойства решений автономных динамических систем (АДС). Фазовый портрет и бифуркации.
  5. Анализ материалов и выявление неслучайных ошибок.
  6. Ассортимент клеевых материалов
  7. Билет 23. Магнитные свойства ферромагнетиков.

Глава 1.

Детали машин чрезвычайно разно­образны и для их изготовления необхо­димы материалы с са­мыми различными свойствами. Требования к материалам особенно возросли в эпоху научно-техни­ческого прогресса. В некоторых случаях для изготовления изделий необходимы ма­териалы с повышенной коррозионной стойкостью, теплопроводностью и элек­тропроводностью, особыми магнитными свойствами, тугоплавкостью, сверх­проводимостью и т. п. Для правильного использования имеющихся материалов, также как и для обработки деталей из них, важно иметь представление об их структуре, так как это даст возможность учитывать влияние режимов эксплуатации или обработки на те или иные характери­стики изделия.

Металлические и большинство не­металлических твердых материалов имеют кристаллическое строение. Характер­ными признаками кристаллических тел являются способность сохранять свою форму и оставаться твердыми при нагреве вплоть до критической температуры, при которой они дискретно переходят в жидкое состояние. Переход кристаллических тел из твердого в жидкое состояние и на­оборот совершается изотермически, т. е. при определенной температуре, называ­емой температурой плавления.

Элементарные частицы, из которых состоят кристаллические тела (атомы, ионы, молекулы) расположены в простран­стве упорядоченно и образуют кристалли­ческие решетки. В кристаллической ре­шетке можно выделить элементарный объем, многократно повторяющийся и состоящий из минимального количества элементарных частиц, — элементарную ячейку; совокупность этих ячеек характеризует особенности строения кристаллического тела данного типа. Элементарные частицы в кристаллической решетке находятся во взаимодей­ствии, определяемом их электронным строением. От характера этого взаимодействия зависят электрические, магнитные, тепловые и оптические свойства материала, его температуры плавления и испарения, модуль упругости и другие свойства.

 

Металлы — кристаллические тела, атомы которых располага­ются в геометрически правильном порядке, образуя кристаллы, в отличие от аморфных тел (например, смола), атомы которых находятся в беспорядочном состоянии.

Располагаясь в металлах в строгом порядке, атомы в плоскости образуют атомную сетку, а в пространстве — атомно-кристаллическую решетку. Линии на этих схемах являются услов­ными; в действительности никаких линий не существует, а атомы колеблются возле точек равновесия, т. е. узлов решетки с большой частотой. Элементарные ячейки таких кристаллических решеток приве­дены на рис. 1. Все кристаллические тела образуют семь разновидностей кристаллических решеток, из которых для металлов наиболее характерны объемно-центрированная кубическая (ОЦК), гранецентрированная кубическая (ГЦК) и гексагональная плотноупакованная (ГПУ) (рис. 1)

В ячейке решетки кубической объемноцентрированной атомы расположены в вершинах куба и в центре куба; такую решетку имеют хром, ванадий, вольфрам, молибден и др. В ячейке кубической гранецентрированной решетки атомы расположены в вер­шинах и в центре каждой грани куба; такую решетку имеют алю­миний, никель, медь, свинец и др. В ячейке гексагональной решетки атомы расположены в вершинах шестиугольных оснований призмы, в центре этих оснований и внутри призмы; гексагональную решетку имеют магний, титан, цинк и др. В реальном металле кристалли­ческая решетка состоит из огромного количества ячеек.

Размеры кристаллической решетки характеризуются ее пара­метрами, измеряемыми в ангстремах — А (1А =- 10 8 см или lA = - 0,1 Нм). Параметр кубической решетки характеризуется дли­ной ребра куба, обозначается буквой а и находится в пределах 0,28—0,6 Нм (2,8 — 6А). Для


 

Рис.1. Атомно-кристаллическое строение металлов.

 

характеристики гексагональной решетки принимают два параметра — сторону шестигранника а и высоту призмы с. Когда отношение с/а -- 1,633, то атомы упако­ваны наиболее плотно, и поэтому такая решетка называется гекса­гональной плотноупакованной.

Свойства кристалла определяются не только типом кристал­лической решетки, но и характером взаимодействия атомов, ионов и электронов между собой. При переходе паров металла в жидкость, а затем в твердое состояние его атомы сближаются настолько, что валентные электроны получают возможность пере­ходить от одного атома к другому и свободно перемещаться таким образом по всему объему металла, обеспечивая высокую электро- и теплопроводность. Между электронами и положительными ионами возникают силы электрического взаимодействия.

 

Рис. 2. Схемы кристаллических решеток:

а - объемно-центрированная кубическая; б — гранецентрированная плотно-упакованная; в — гексагональная плотноупакованная

 

В зависимости от температуры и давления многие металлы могут образовывать различные типы кристаллических решеток. Это способность металлов носит название полиморфизма или алло­тропии. Полиморфные превращения свойственны таким широко применяемым в машиностроении металлам, как Fe, Ti, Mn, Co, Sn. Полиморфные модификации элементов обычно обозначают, начи­ная с наиболее низкотемпературной, буквами , , , и т. д. Так например: железо при нагреве до температуры 910 °С образует модификацию Fe с ОЦК-решеткой, в интервале 910—1400 °С — Fe с ГЦК-решеткой и свыше 1400 °С — Fe с решеткой ОЦК. При этом происходит существенное изменение свойств материала. Это явление широко используют в технике для улучшения обра­батываемости металлов, при их термообработке и других про­цессах.).

Для характеристики формы и размера элементарной ячейки кристаллической решетки используют (рис.2) шесть основных параметров: расстояния по осям координат —а, Ь, с, называемые периодом решетки, и три угла — , , между этими отрезками. Кроме основных параметров в кристаллографии при­няты еще другие, дополнительно характеризующие кристалличе­скую решетку. венное влияние на все процессы, протекающие в металлах. Они очень сильно влияют на механические свойства, резко снижая прочность металлов.

В различных плоскостях кристаллической решетки атомы рас­положены с различной плотностью и поэтому многие свойства кристаллов в различных направлениях различны. Такое различие называется анизотропией.

Все кристаллы анизотропны. В отличие от кристаллов аморф­ные тела (например, смола) в различных направлениях имеют в основном одинаковую плотность атомов и, следовательно, одина­ковые свойства, т. е. они изотропны.

В металлах, состоящих из большого количества по-разному ориентированных мелких анизотропных кристаллов (поликри­сталл), свойства во всех направлениях одинаковы (усредненные). Эта кажущаяся независимость свойств от направления называется квазиизотропией *.

Если в структуре металла создается одинаковая ориентировка кристаллов, то появляется анизотропия.

При переходе металла из жидкого состояния в твердое про­исходит так называемый процесс кристаллизации. Основы теории кристаллизации разработаны основоположником науки о металлах — металловедения Д. К- Черновым, кото­рый установил, что кристаллизация состоит из двух процессов: зарождения мельчайших частиц кристаллов (зародышей кристаллизации) и роста кристаллов из этих центров (рис.3).

 

 

Рис.3. Последовательные этапы процесса кристаллизации.

 

Рост кристаллов заключается в том, что к их зародышам при­соединяются все новые атомы жидкого металла. Сначала кристаллы растут свободно, сохраняя правильную геометрическую форму,но это происходит только до момента встречи растущих кристаллов.В месте соприкосновения кристаллов рост отдельных их граней прекращается и развиваются не все, а только некоторые грани кристаллов. В результате кристаллы не имеют правильной геометрической формы. Такие кристаллы называют кристаллитами или зернами. Величина зерен зависит от числа центров кристаллизации и скорости роста кристаллов. Чем больше центров кристаллизации,тем больше кристаллов образуется в данном объеме и каждый кристалл (зерно) меньше. На образование центров кристаллизации влияет скорость охлаждения. Чем больше скорость охлаждения металла,тем больше возникает в нем центров кристаллизации, и зерна получаются мельче (рис.4).Это подтверждается на практике в тонких сечениях литых деталей охлаждающихся более быстро,металл всегда получается более мелкозернистым, чем в толстых массивных литых деталях, охлаждающихся медленнее. Однако не всегда можно регулировать скорость охлаждения.

Рис.4. Влияние скорости охлаждения на возникновение центров кристаллизации и на величину образующихся зерен.

1.- медленное охлаждение, 2 – ускоренное охлаждение, 3 – быстрое охлаждение.

Всем кристаллам присуща анизотропия, т. Е. неравномерность свойств по направлениям, определяемая различными рассто­яниями между атомами в кристаллической ячейке. Наиболее сильно анизотропия выражена у металлов, имеющих асимметричное кри­сталлическое строение. От направления действия сил в кристалле существенно зависят такие показатели физических свойств, как прочностные характеристики, модуль упругости, термический коэффициент расширения, коэффициенты тепло- и электропровод­ности, показатель светового преломления и др. Анизотропия характерна и для поверхностных слоев кристаллов. Такие свой­ства, как поверхностное натяжение, электронные потенциалы, адсорбционная способность, химическая активность, существенно различны у различных граней кристалла.

Строение и свойства реальных кристаллов отличаются от иде­альных, представленных на рис. 1, вследствие наличия в них дефектов, которые подразделяют на поверхностные и внутренние. Реальный единичный кристалл обладает свободной (наружной) поверхностью, на которой уже вследствие поверхностного натяже­ния решетка будет искажена. Это искажение может распростра­няться и на прилегающую к поверхности зону.

 

 

Рис.5. Дефекты кристаллической решетки:

а — точечные; б — линейные; в- двухмерные (плоскостные)

 

Дефекты внутреннего строения подразделяют на нульмерные (точечные), одномерные — линейные и двухмерные, т. Е. развитые в двух направлениях. К точечным дефектам относятся: вакансии в случае, когда отдельные узлы кристаллической решетки не за­няты атомами; дислоцированные атомы, когда отдельные атомы оказываются в междуузлиях, или примесные атомы, количество которых даже в чистых металлах весьма велико. Около таких дефектов решетка будет упругоискаженной на расстоянии одного-двух ее периодов (рис. 5, а). Хотя относительная концентрация точечных дефектов может быть невелика, они вызывают чрезвы­чайно большие изменения физических свойств еляоелла. Напри­мер, тысячные доли атомного процента примесей к чистым полу­проводниковым кристаллам изменяют их электрическое сопроти­вление в 105—10е раз.

Линейные дефекты малы в двух измерениях кристаллической решетки и достаточно велики в третьем. К таким дефектам отно­сятся смещения атомных плоскостей или дислокации и цепочки вакансий (рис. 5, б). Важнейшим свойством таких дефектов является их подвижность внутри кристалла и активное взаимо­действие между собой и с другими дефектами.

Плотность дислокаций в кристаллах велика: в недеформированных кристаллах их количество на 1 см* достигает 10е—108; при пластической деформации происходит возникновение новых дисло­каций, и это число увеличивается в тысячи раз. Двухмерные де­фекты характерны для поликристаллических материалов, т. Е. для материалов, состоящих из большого количества мелких кристаллов, различно ориентированных в пространстве.

Граница сросшихся при затвердевании кристаллов предста­вляет собой тонкую, до 10 атомных диаметров, зону с нарушением порядка в расположении атомов. В поликристаллическом теле границы отдельных кристаллов имеют криволинейные поверх­ности разделов, а сами кристаллы —неправильную форму. По­этому их в отличие от правильно ограниченных кристаллов на­зывают кристаллитами или зернами. Зерна поликристалла при затвердевании растут из различных центров кристаллизации и ориентация осей кристаллических решеток соседних зерен раз­лична. Зерно металла состоит из отдельных блоков, ориентирован­ных один по отношению к другому под небольшим углом. Границы между ними представляют собой обычно скопления дислокаций (рис. 5, в). Поверхностные дефекты малы только в одном направле­ел; в двух других они могут достигать размера кристаллита.

Влияние дефектов строения на свойства материалов огромно. Например, прочность реальных кристаллов на сдвиг из-за наличия дефектов строения уменьшается на три-четыре порядка по сравне­нию с той же характеристикой идеального кристалла. Влияние дефектов строения на прочностные характеристики металлов не однозначно. Из представленной на рис. 6 зависимости видно, что прочность практически бездефектных кристаллов (так называемых «усов») очень высока. Увеличение количества п дефектов строения в 1 см3 приводит к резкому снижению прочности (ветвь А). Точка Рк характеризует прочность металлов, которые принято называть «чистыми». Дальнейшее увеличение дефектов, например, введением

 

 

 

Рис. 6. Зависимость проч­ности кристаллического тела от плотности де­фектов строения

 

легирующих примесей или методами специального искажения кристаллической решетки повышает реальную прочность металлов (ветвь В). Для создания наиболее прочных материалов стараются получить оптимальное количество дефектов. Наибольшее упроч­нение достигается при плотности дислокаций 1012—1018 на 1 см8.

Кроме влияния на прочностные характеристики дефекты ре­шетки играют большую роль в процессах диффузии и самодиффу­зии, которые во многом определяют скорости протекания хими­ческих реакций в твердом теле, а также ионную проводимость кристаллов. Дефекты кристаллической решетки, распределенные необходимым образом по объему кристалла, позволяют создавать в одном образце области с различными типами проводимости, что является необходимым при изготовлении некоторых полупровод­никовых элементов.

В технике значительно чаще применяют не чистые металлы, а сплавы, состоящие из двух или нескольких элементов, называ­емых компонентами. В качестве компонентов сплавов могут быть как чистые элементы, так и химические соединения. Широкое применение сплавов в качестве машиностроительных материалов можно объяснить тем, что они обладают разнообразным комплек­сом свойств, которые могут быть направленно изменены в зависимости от количества и вида компонентов, а также с помощью термической или других видов обработки.

 

 

Рис. 7. Виды кристаллических решеток сплавов.

а — твердый раствор замещения; б — твердый раствор внедрения; в — химическое соединение

 

При сплавлении ком­поненты образуют в сплаве фазы —однородные объемы, разграниченные друг от друга поверхностями раздела — границами, при переходе через которые свойства могут изменяться скачко­образно. В сплавах образуются следующие основные фазы: твер­дые растворы, химические соединения и механические смеси.

Твердые растворы являются наиболее распространенной фазой в металлических сплавах. Характерной особенностью их строения является сохранение кристаллической решетки металла-раствори­теля. Растворенные металлы могут быть распределены в ней в виде твердого раствора замещения (рис. 7, а) в том случае, если у обоих компонентов однотипные решетки, достаточно близкие атомные радиусы и физико-химические свойства, или в виде твердого раствора внедрения (рис. 7, б), если атомный радиус растворенного компонента достаточно мал.

Химические соединения обычно образуются между металлами и неметаллами и обладают свойствами неметаллических включе­ний, а также между металлами. При этом образуется новый тип кристаллической решетки, отличной от решеток составляющих компонентов и обладающий другими свойствами (рис.7, в). При сплавлении компонентов с весьма различными атомными ра­диусами и электрохимическими свойствами взаимная раствори­мость практически отсутствует. В этом случае образуется механи­ческая смесь кристаллов компонентов.

. Как правило, в много­компонентных металлических сплавах можно одновременно встре­тить три вида фаз. Направленным изменением сочетания компонентов в сплавах можно изменять количество дефектов строения и, следо­вательно, управлять физико-механическими характеристи­ками.

При выборе материала для конструкции исходят из комплекса свойств, которые подразделяют на механические, физико-хими­ческие, технологические и эксплуатационные. К основным меха­ническим свойствам относят прочность, пластичность, ударную вязкость, усталостную прочность, ползучесть, твердость и износо­стойкость. Под прочностью понимают способность материала сопроти­вляться деформации или разрушению под действием статических или динамических нагрузок. При статических нагрузках произ­водят испытания на растяжение, сжатие, изгиб и кручение. Пока­зателем прочности является предел прочности образца испытуемого металла,приведенного на рис. 9, а.

σ = ,

где Р — нагрузка, необходимая для разрушения стандартного образца, МН· м; — площадь поперечного сечения образца в мм .

 

Упругая пластическая деформация. Деформацией называется изменение размеров и формы металла под действием приложенных сил. Деформация металла бывает упругой,устраняющейся после прекращения действия внешних сил, и пла­стической, остающейся после прекращения действия внешних сил.

При упругой деформации под действием приложенной нагрузки расстояние между атомами в кристаллической решетке изменяется. При растяжении атомы удаляются, а при сжатии сближаются. Изменение межатомного расстояния очень мало и после снятия на­грузки смещенные атомы под действием сил притяжения (после рас­тяжения) и отталкивания (после сжатия) становятся на свои места.

При пластической деформации происходит скольжение (сдвиг) одной части кристалла относительно другой как результат пере­мещения атомов по определенным плоскостям кристаллической решетки. Для того чтобы сдвиг произошел путем одновременного сме­щения одной части кристалла относительно другой,потребовалось бы усилие, в сотни раз превышающее затрачиваемое при деформации реального металла. Как было указано выше, кристалл реального металла имеет ряд деффектов — дислокаций и пластический сдвиг в реальном кристалле есть процесс перемещения дислокаций. В реальном металле число дислокаций очень велико. Образова­ние дислокаций требует значительной энергии, но они легко пере­мещаются. Таким образом, процесс скольжения в кристалле реаль­ного металла происходит не путем одновременного сдвига всей атомной плоскости, а путем перемещения дислокаций вдоль пло­скости скольжения. Следовательно, если в кристалле нет дислокаций, то он обла­дает весьма высокой прочностью, равной теоретической. Это дока­зано созданием и исследованием бездислокационных кристаллов.

 


Дата добавления: 2015-08-10; просмотров: 304 | Нарушение авторских прав


Читайте в этой же книге: ПРОИЗВОДСТВО ЧУГУНА. | Подготовка материалов к доменной плавке | ПРОИЗВОДСТВО СТАЛИ. | КЛАССИФИКАЦИЯ СТАЛЕЙ. | Маркировка сталей | КОНСТРУКЦИОННЫЕ СТАЛИ | Низколегированные конструкционные стали. | ИНСТРУМЕНТАЛЬНЫЕ СТАЛИ И ТВЕРДЫЕ СПЛАВЫ. | СТАЛИ И СПЛАВЫ С ОСОБЫМИ СВОЙСТВАМИ | Маркировка чугунов. |
<== предыдущая страница | следующая страница ==>
О расширении человеческого осознания| Методы испытания механических свойств металлов.

mybiblioteka.su - 2015-2024 год. (0.014 сек.)