Читайте также: |
|
· При всех измерениях из-за несовершенства измерительных приборов получаются приближенные результаты. Следовательно, результаты измерения содержат некоторые погрешности. Чтобы оценить погрешность результата, пользуются следующими упрощенными методами вычисления погрешности.
· Если N1, N2, N3 .... Nn - результаты отдельных измерений величины X, то средний результат равен их сумме, деленной на число измерений:
Nср =
· Разность между результатом отдельного измерения и средним результатом, взятую по модулю, называют абсолютной погрешностью отдельного измерения:
∆Νi = | Ni – N |
· Средняя абсолютная погрешность определяется аналогично среднему результату
∆N =
· Относительная погрешность равна отношению средней абсолютной погрешности измеряемой величины к среднему результату:
В данной работе относительная погрешность определения плотности равна отношению средней абсолютной погрешности плотности к среднему значению плотности:
(5.1)
· Окончательный результат записывается в форме:
X = Nср ± ∆Nср ,
δср = …%
· Если проводится только один опыт, то за абсолютную погрешность принимают погрешность приборов: в данной работе - это погрешности штангенциркуля и весов.
В таком случае сначала рассчитывают относительную погрешность с использованием погрешности приборов: относительная погрешность d определения плотности вещества равна сумме относительных погрешностей определения массы, длины, ширины и толщины тела, определяемых экспериментально (5.2):
, (5.2)
а затем рассчитывают абсолютную погрешность из формулы (5.1):
∆ r = δ· r (5.3)
Дата добавления: 2015-08-09; просмотров: 99 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Экспериментальная часть | | | Запись полученных результатов |