Читайте также:
|
|
С 33. Теория валентных связей была первой из квантовомеханических теорий, использованной для приближенного объяснения характера химических связей в КС. В основе ее применения лежала идея о донорно-акцепторном механизме образования ковалентных связей между лигандом и комплексообразователем.
1) Лиганд считается донорной частицей, способной передать пару электронов акцептору – комплексообразователю, предоставляющему для образования связи свободные квантовые ячейки (АО) своих энергетических уровней.
2) Для образования ковалентных связей между комплексообразователем и лигандами необходимо, чтобы вакантные s-, p- или d-атомные орбитали комплексообразователя подверглись гибридизации определенного типа. Гибридные орбитали занимают в пространстве определенное положение, причем их число соответствует КЧ комплексообразователя.
3) При этом часто происходит объединение неспаренных электронов комплексообразователя в пары, что позволяет высвободить некоторое число квантовых ячеек – АО, которые затем участвуют в гибридизации и образовании химических связей.
4) Неподеленные пары электронов НЭП лигандов взаимодействуют с гибридными орбиталями комплексообразователя, и происходит перекрывание соответствующих орбиталей комплексообразователя и лиганда с появлением в межъядерном пространстве повышенной электронной плотности. Электронные пары комплексообразователя, в свою очередь, взаимодействуют с вакантными АО лиганда, упрочняя связь по дативному механизму. Таким образом, химическая связь в комплексных соединениях является обычной ковалентной связью, достаточной прочной и энергетически выгодной.
С 34. Электронные пары, находящиеся на гибридных орбиталях комплексообразователя, стремятся занять в пространстве такое положение, при котором их взаимное отталкивание будет минимально. Это приводит к тому, что структура комплексных ионов и молекул оказывается в определенной зависимости от типа гибридизации.
Рассмотрим образование некоторых комплексов с позиций ТВС. Прежде всего отметим, что валентные орбитали атомов комплексообразователей близки по энергии:
E (n -1) d » Ens» Enp» End
Тип гибридизации | КЧ | Геометрия комплекса | Примеры |
sp | линейная | [Ag(CN)2]- [Cu(NH3)2]+ | |
sp 2 | треугольная | [HgI3]- | |
sp 3 | тетраэдр | [Be(OH)4]2- [MnCl4]2- [Zn(NH3)4]2+ | |
dsp 2 | квадрат | [Ni(CN)4]2- [PtCl4]2- [Pt(NH3)2Cl2]0 | |
sp 3 d (z 2) | тригональная бипирамида | [Fe(CO)5] | |
sp 3 d (x 2- y 2) | квадратная пирамида | [MnCl5]3- [Ni(CN)5]3- | |
sp 3 d 2, d 2 sp 3 | октаэдр | [Al(H2O)6]3+ [SnCl6]2- [Co(NH3)6]3+ [Fe(CN)6]3- | |
sp 3 d 3 | пентагональная бипирамида | [V(CN)7]4- [ZrF7]3- |
●С 34. Например, катион [Zn(NH3)4]2+ включает комплексообразователь цинк(II). Электронная оболочка иона Zn2+ имеет формулу [Ar] 3 d 10 4 s 0 4 p 0 и может быть условно изображена так:
Вакантные 4 s - и 4 p -орбитали атома цинка(II) образуют четыре sp 3-гибридные орбитали, ориентированные к вершинам тетраэдра.
Каждая молекула аммиака имеет НЭП у атома азота. Орбитали атомов азота, содержащие НЭП, перекрываются с sp 3-гибридными орбиталями цинка(II), образуя тетраэдрический комплексный катион тетраамминцинка(II) [Zn(NH3)4]2+:
Поскольку в ионе [Zn(NH3)4]2+ нет неспаренных электронов, то он проявляет диамагнитные свойства.
● Тетрахлороманганат(II)-ион [MnCl4]2- содержит пять неспаренных электронов на 3 d -орбиталях и вакантные 4 s - и 4 p -орбитали. Вакантные орбитали образуют sp 3-гибридные орбитали, которые перекрываются с p -атомными орбиталями хлорид-ионов:
Полученный таким образом тетраэдрический ион [MnCl4]2- является парамагнитным, так как содержит пять неспаренных электронов.
Дата добавления: 2015-08-09; просмотров: 89 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Примеры образования и разрушения комплексов | | | Гибридизация орбиталей и структура комплексов |