Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Теорема1 (о связи между непрерывностью и дифференцируемостью).

Читайте также:
  1. C - матрица (по форме напоминает куб) применяется для определения взаимосвязи элементов трех списков одновременно.
  2. D) невозмещаемые налоги, уплачиваемые в связи с приобретением объекта нематериальных активов.
  3. II. ПРИЧИНЫ МЕЖДУНАРОДНОЙ МИГРАЦИИ КАПИТАЛА.
  4. III. Радиорелейные средства связи
  5. VI.5. Международный опыт
  6. XIV Международного фестиваля
  7. А22. Трофической структурой биогеоценоза являются взаимодействия между

Производные основных элементарных функций.

Функция Производная   Функция Производная
C    
 
 
 
 
 
 

 

Дифференцируемость функции.

Опр. Числовая функция y=f(x) называется дифференцируемой в точке , если ее приращение в этой точке можно представить в виде:

,

где А – некоторое число, - функция от , являющаяся бесконечно малой при .

 

Утв. Для того, чтобы функция была дифференцируема в точке, необходимо и достаточно, чтобы она имела в этой точке конечную производную.

 

Теорема1 (о связи между непрерывностью и дифференцируемостью).

Если функция дифференцируема в точке, то она непрерывна в этой точке.

Док-во. Пусть функция y=f(x) дифференцируема в точке . Тогда, по определению, ее приращение можно представить в виде . Переходя в этом равенстве к пределу при , получим:

, что соответствует определению непрерывности функции.▲

 

Теорема 1 является необходимым (но не достаточным) признаком дифференцируемости функции в точке. Обратная теорема, вообще говоря, не верна, т.е. если функция непрерывна в точке, то она не обязательно дифференцируема в этой точке.

 

Пример.

Рассмотрим функцию , непрерывную в нуле. Докажем, что функция не дифференцируема в т. х=0.

;

.

Т.к. односторонние пределы в нуле не равны, предел не существует.


Дата добавления: 2015-08-09; просмотров: 93 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Восстание масс| Основные правила дифференцирования.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)