Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Окончательное решение

Читайте также:
  1. Antrag auf Erteilung einer Aufenthaltserlaubnis - Анкета для лиц, желающих получить разрешение на пребывание (визу)
  2. IV. РАЗДЕЛ. РЕШЕНИЕ ПЕДАГОГИЧЕСКИХ СИТУАЦИЙ
  3. V Внезапное решение
  4. V. Внезапное решение
  5. VII. Пути решение проблем
  6. А не является ли такое игровое решение проблемы просто иллюзией решения? Где гарантия, что через некоторое время эта же проблема вновь не проявится в моём пространстве?
  7. Альные технологии. Целью первых из них является решение общечеловеческих проблем,

 

Во время анализа свойств прямоугольного треугольника с углами в 40° и 50° я неожиданно наткнулся на решение. Я обнаружил, что в треугольнике с такими углами основание и перпендикулярная сторона измеряются соответственно пятью и шестью единицами.

Иными словами, налицо выраженное целыми числами (5 6) отношение двух перпендикулярных сторон. Поначалу я подумал что это просто счастливое совпадение. Треугольник был выбран потому, что отвечал критериям градусного основания, кратного десяти, то есть имел углы 40°, 50° и 90°. Вскоре меня озарило можно построить большое число углов с помощью очень простых числовых отношений. Построив прямоугольный треугольник и меняя от ношения сторон, можно легко получить определенные углы. Мне оставалось лишь найти отношения, необходимые для построения различных углов.

По случайному совпадению именно эту систему применяли древние египтяне для установления склона своих пирамид – вспомним секед угла. Разница заключалась лишь в том, что египтяне использовали такое отношение для установления градиентов, а древние бритты – для построения углов на горизонтальной плоскости. Зная нужные отношения, легко можно было построить весь ряд углов, не располагая знаниями о сложной геометрии и сложными приборами. Стало ясно, почему археологи не раскопали никаких теодолитов. Искомые углы могли быть построены с помощью простых и широко доступных материалов.

Для построения какого‑либо угла на ровном участке земли нужны лишь тонкая бечевка, несколько колышков и измерительное устройство для фиксации отношений. Идеально подходит прямой отрезок ствола молодого деревца длиной в один‑два метра. Весь фокус в том, чтобы знать отношения искомого угла, и его уже легко изобразить на земле.

Система проще некуда. Необходимо лишь знать, какие отношения дают требуемые углы, например, в случае уже описанного треугольника древним землемерам следовало лишь помнить отношение 6:5. Оно дает углы в 39,81° и 50,19°, что весьма близко к 40° и 50° (рис. 61).

При использовании такого метода и таких отношений погрешность составит менее 3,5 метра (11,5 фута) на 1 километр (0,62 мили). Некоторые отношения дают гораздо большую степень точности. В случае угла в 6°, получаемого при отношении 19:2, погрешность составит 1 к 4000. Ее можно проиллюстрировать следующим примером: во время путешествия из Лондона в Нью‑Йорк отклониться на одну милю от точки назначения.

Ныне схожая система используется в тригонометрии, устанавливающей особые отношения для вычисления углов. Их называют синусы, секансы и тангенсы, а их обратные величины – косинусы, косекансы и котангенсы. Синусы и косинусы можно использовать для вычисления углов при известной длине гипотенузы, а тангенсы связаны отношением между основанием и перпендикулярной стороной прямоугольного треугольника. Компьютеры и калькуляторы вычисляют эти величины в доли секунды, – а в мои школьные годы нам приходилось искать их в ряде таблиц.

 


Дата добавления: 2015-08-18; просмотров: 86 | Нарушение авторских прав


Читайте в этой же книге: Мальтийские храмы | Катаклизм, погубивший Атлантиду | Тектонические платформы | Континент Атлантида | Мегалитический ярд | Канон мер | Стандартные английские единицы измерения и окружность | Широта и долгота | Съемка местности | Холм Бредон и окружающий район |
<== предыдущая страница | следующая страница ==>
Прорисовывается схема| Композиция холма Бредон

mybiblioteka.su - 2015-2024 год. (0.006 сек.)