Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Число Рейнольдса

Читайте также:
  1. II. Числовые характеристики выборки.
  2. III. Умножение на двузначное и трехзначное число
  3. N - общее число единиц совокупности
  4. Oi-Ha-Hou есть Тьма, Беспредельность, или же Не-Число, Ади-Нидана, Свабхават – .
  5. RBC - число эритроцитов в млн. в 1 мм3 крови.
  6. А46. Кратно увеличенное по отношению к гаплоидному набору (2n, 3n, 4n, и т.д.) число хромосом называется
  7. АВ блокада I степени за счет дву­сторонней блокады ножек пучка Ги­са. Изолированно встречается в 7% случаев этой блокады [Narula О., 1979]; общее же число случаев такой
 

Характер потока жидкости или газа — ламинарный или турбулентный — определяется безразмерным числом, зависящим от скорости потока, вязкости и плотности жидкости и характерной длины элемента потока

 

ЧИСЛО РЕЙНОЛЬДСА

Осборн Рейнольдс был в некотором смысле последним приверженцем старых добрых традиций классической механики Ньютона. В конце жизни он даже разработал тщательно продуманную механическую модель светоносного эфира (см. опыт майкельсона—морли), согласно которой эфир представлял собой систему мельчайших шарообразных частиц, свободно перекатывающихся друг относительно друга подобно дробинкам в мешке. До конца своих дней он считал, что «прогрессу механики нет конца... и то, что современники полагают ее пределом и тупиком... со временем окажется лишь новым поворотом на пути ее развития».

Чтобы понять всю важность главного открытия его жизни, нужно сначала немного рассказать о так называемых безразмерных величинах. Предположим, нам нужно измерить геометрические размеры комнаты. Допустим, мы взяли рулетку и определили, что длина комнаты равна 5 метрам. Однако, если мы возьмем рулетку, проградуированную в футах, окажется, что длина комнаты равна 15 с небольшим футов. То есть полученные нами при измерении цифры будут зависеть от используемых единиц, в то время как реальная длина комнаты остается постоянной.

Есть, однако, и такие характеристики геометрии комнаты, которые никак не зависят от единиц измерения. В частности, такой величиной является отношение длины комнаты к ее ширине — так называемое характеристическое соотношение. Если комната имеет длину 20 футов и ширину 10 футов, ее характеристическое соотношение равно 2. Измерив длину и ширину комнаты в метрах, мы получим, что размеры комнаты равны 6,096 м х 3,048 м, однако характеристическое соотношение останется прежним: 6,096 м: 3,048 м = 2. В данном случае 2 — безразмерная характеристика комнаты.

Теперь давайте обратимся к потоку жидкости. Различные жидкости при течении в трубах, растекании по поверхности или обтекании препятствий обладают различными свойствами. Густая, клейкая жидкость (например, мед) обладает, как говорят физики, большей вязкостью, нежели легкая и подвижная жидкость (например, бензин). Степень вязкости жидкости определяется так называемым коэффициентом вязкости, который принято обозначать греческой буквой ц («эта»). У густых, клейких жидкостей коэффициент вязкости ц в десятки и сотни раз выше, чем у легких и текучих.

Рейнольдсу удалось обнаружить безразмерное число, описывающее характер потока вязкой жидкости. Сам ученый получил его экспериментально, проведя изнурительную серию опытов с различными жидкостями, однако вскоре было показано, что его можно вывести и теоретически из законов механики ньютона и уравнений классической гидродинамики. Это

 

число, которое теперь называют числом Рейнольдса и обозначают Кв, характеризует поток и равно:

Кв = уЬр/ц,

где р — плотность жидкости, V — скорость потока, а Ь — характерная длина элемента потока (в этой формуле важно помнить, что Кв — это одно число, а не произведение К х е).

Теперь давайте посмотрим на размерность составляющих числа Рейнольдса:

— размерность коэффициента вязкости ц — ньютоны умножить на секунды разделить на кв. метры, или нс/м2. Если вспомнить, что, по определению, н = кг-м/с2, мы получим кг/м-с

— размерность плотности р — килограммы разделить на кубические метры, или кг/м3

— размерность скорости V — метры разделить на секунды, или м/с

— размерность длины элемента потока Ь — метры, или м Отсюда получаем, что размерность числа Рейнольдса равна:

(м/с) х (м) х (кг/м3): (кг/м-с), или после упрощения

(кг/м-с): (кг/м-с)

Итак, все единицы измерения в размерности числа Рейнольдса сокращаются, и оно действительно оказывается безразмерной величиной.

Рейнольдсу удалось выяснить, что при значении этого числа 2000-3000 поток становится полностью турбулентным, а при значении Кв меньше нескольких сотен — поток полностью ламинарный (то есть не содержит завихрений). Между двумя этими значениями поток носит промежуточный характер.

Можно, конечно, считать число Рейнольдса чисто экспериментальным результатом, однако его можно интерпретировать и с позиции законов Ньютона. Жидкость в потоке обладает импульсом, или, как иногда говорят теоретики, «инерционной силой». По сути это означает, что движущаяся жидкость стремится продолжить свое движение с прежней скоростью. В вязкой жидкости этому препятствуют силы внутреннего трения между слоями жидкости, стремящиеся затормозить поток. Число Рей-нольдса как раз и отражает соотношение между двумя этими силами — инерции и вязкости. Высокие значения числа Рей-нольдса описывают ситуацию, когда силы вязкости относительно малы и не способны сгладить турбулентные завихрения потока. Малые значения числа Рейнольдса соответствуют ситуации, когда силы вязкости гасят турбулентность, делая поток ламинарным.

 

Число Рейнольдса очень полезно с точки зрения моделирования потоков в различных жидкостях и газах, поскольку их поведение зависит не от реальной вязкости, плотности, скорости и линейных размеров элемента потока, а лишь от их соотношения, выражаемого числом Рейнольдса. Благодаря этому можно, например, поместить в аэродинамическую трубу уменьшенную модель самолета и подобрать скорость потока таким образом, чтобы число Рей-нольдса соответствовало реальной ситуации полномасштабного самолета в полете. (Сегодня, с развитием мощной компьютерной техники, нужда в аэродинамических трубах отпала, поскольку воздушные потоки можно смоделировать на компьютере. В частности, первым гражданским авиалайнером, полностью спроектированным исключительно с использованием компьютерного моделирования, стал «Боинг-747». В этой связи любопытно отметить, что при проектировании гоночных яхт и высотных зданий до сих пор практикуется их «обкатка» в аэродинамических трубах.)

 

ОСБОРН РЕИНОЛЬДС (Osborne Reynolds, 1842-1912) — ирландский инженер-физик. Родился в Белфасте в семье потомственного священника англиканской церкви. После недолгого практического обучения инженерному делу в строительной фирме поступил в Кембридж, по окончании которого, несмотря на относительную молодость, сразу же получил должность профессора кафедры гражданского инженерного дела Оуэнс-колледжа (современный Манчестерский университет), которую и занимал на протяжении 37 лет. Рейнольдс занимался научно-техническими разработками в области гидродинамики и гидравлики, стал основоположником теорий смазки и турбулентности, принципиально усовершенствовал конструкцию центробежных насосов. Для изучения устьевых потоков построил уменьшенную модель дельты реки Мерси.


Дата добавления: 2015-08-18; просмотров: 62 | Нарушение авторских прав


Читайте в этой же книге: ГЛИКОЛИЗ И ДЫХАНИЕ | ПРОВОДИМОСТИ | Водородная связь | СИНТЕЗ МОЧЕВИНЫ | Относительности | Второе начало | ГИПОТЕЗА ГЕИ | Миланко- | Чандрасекара | Толчков — ударные |
<== предыдущая страница | следующая страница ==>
Числа Фибоначчи| Чандрасекара

mybiblioteka.su - 2015-2024 год. (0.008 сек.)