Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Онтогенез повторяет филогенез

Читайте также:
  1. Друг друга. Проблема ясна как день (повторяет предыдущие высказывания), и я хотела бы
  2. ИСТОРИЯ ПОВТОРЯЕТСЯ
  3. Общие принципы формирования функциональных систем в онтогенезе по П.К.Анохину.
  4. Онтогенез
  5. Онтогенез материнской сферы
  6. ОСОБЕННОСТИ РАЗВИТИЯ РЕЧИ В ОНТОГЕНЕЗЕ

сер. XX ^ ТРИЕДИНЫЙ МОЗГ

В середине ХХ века в умах бытовало довольно своеобразное представление об устройстве мозга. Считалось, что человеческий мозг развивался путем нарастания слоев — подобно кольцам на древесном срезе. Расположенные в самом основании мозга мозжечок и ствол должны были отвечать за основные функции, такие как равновесие и регуляция деятельности внутренних органов. Полагали, что это — «рептильная» часть мозга, наследство наших далеких предков. Находящийся выше средний мозг — средоточие чувства голода, полового возбуждения и т. п. Считалось, что это «слой млекопитающих». А над ним расположена кора головного мозга — область мыслей и высших психических функций, которые и отличают людей от прочих живых существ. Эта схема, известная под названием «триединый мозг», приобрела популярность благодаря Карлу Сагану (Carl Sagan, 1934-96) и его книге «Драконы Эдема» (1977).

В пользу теории триединого мозга говорит многое. Она проста, привлекательна и логична. К сожалению, это представление абсолютно неверно.

Во-первых, мозг человека хоть и отличается от мозга других животных, но не так, как считал Саган. Рыбий мозг отличается от человеческого по форме, но все части у них практически и те же. Мозг рыбы и мозг человека разнятся примерно как два автомобиля — существуют явные различия, но у обоих автомобилей есть колеса, двигатель, тормоза и т. п. Тот факт, что человек обладает большей интеллектуальной мощью, объясняется большими размерами коры у человека, но не тем, что у рыбы ее вовсе нет.

Во-вторых, работа мозга — это очень сложный процесс, который невозможно втиснуть в рамки такой простой модели. Сегодня мы знаем, что мозг состоит из многочисленных узкоспециализированных скоплений клеток и что его функционирование зависит от взаимосвязей этих центров друг с другом. Это понятие нередко передается выражением «общность ума».

На примере зрения рассмотрим, как группы нейронов взаимодействуют друг с другом. Первичная обработка входящего света происходит в сетчатке глаза. Сигналы от светочувствительных клеток направляются к специализированным нейронам (см. распространение нервных импульсов). Одни нейроны приходят в возбуждение, когда к ним поступает сигнал о светлом пятне на темном фоне; другие — когда воспринимают темное пятно на светлом фоне. Сигнал, идущий к мозгу, — это последовательность импульсов, которые представляют зрительный образ в виде последовательности темных и светлых пятен. (На самом деле в сетчатке происходит два вида обработки — одни клетки чувствительны к цвету, другие — к малым различиям в интенсивности света.)

Некоторые нейроны сетчатки связаны (говоря техническим языком, спроецированы на) с определенным участком теменной области мозга, функция которой—быстрое формирование смутной картины поля зрения и осуществление непроизвольной реакции,

 

если в поле зрения что-то происходит. Именно поэтому люди, находящиеся в комнате, автоматически поворачивают головы к двери, когда она открывается. Большинство сигналов от нейронов передаются к зрительной коре в затылочной области мозга. Там сигналы от разных частей сетчатки вновь собираются вместе (посредством процесса, который мы еще до конца не понимаем) в зрительный образ. Каждый нейрон в зрительной коре связан со многими нейронами в сетчатке. Эти корковые нейроны имеют узкую специализацию. Некоторые из них возбуждаются, только если в поле зрения появится горизонтальная линия, другие — только при появлении вертикальной линии и т.д. У этих нейронов есть проекция на другие отделы мозга, поскольку процесс воссоздания образа выходит на все более высокие уровни. Мы знаем, что в мозгу существуют специализированные нейроны, которые, например, будут возбуждаться только при виде звездочки; другие будут возбуждаться только при виде окружности с полоской внутри и т. п. Представление о том, как с помощью этих специализированных нейронов строится зрительный образ, ученые называют проблемой связывания. То есть нам важно понять, каким образом сигналы от нейронов связываются вместе для получения единого образа.

Этот вид специализации нейронов можно объяснить с точки зрения теории эволюции. Например, способность некоторых нервных импульсов от сетчатки напрямую запускать рефлекс, заставляющий нас подробнее оценить движение внешних объектов, давала очевидное преимущество организмам, живущим в недружелюбной окружающей среде. Быстрый взгляд помогал остаться в живых, если это движение исходило от приближающегося хищника.

Наличие такой специализации—еще и причина того, что многие ученые (включая автора) непоколебимо уверены, что мозг — не компьютер. Просто вычислительные машины работают совсем не так, как мозг, и каждая из них подходит для решения определенных задач (см. тест тьюринга). К примеру, даже небольшой компьютер превзойдет любого человека по способности считать и запоминать, но ни один ныне существующий компьютер не способен говорить, как пятилетний ребенок. Компьютер являет собой орудие труда (такое же, как молоток), помогающее людям в достижении их целей, и ничего более.

 


Ударные волны

 

Если объект движется быстрее, чем волны, которые он порождает в среде, он возбуждает расходящийся позади него шлейф ударных волн

УДАРНЫЕ ВОЛНЫ

Любой объект, двигаясь в материальной среде, возбуждает в ней расходящиеся волны. Самолет, например, воздействует на молекулы воздуха в атмосфере. Из каждой точки пространства, где только что пролетел самолет, начинает во все стороны с равной скоростью расходиться акустическая волна в строгом соответствии с законами распространения волн в воздушной среде. Таким образом, каждая точка траектории движения объекта в среде (в данном случае самолета) становится отдельным источником волны со сферическим фронтом.

При движении самолета на дозвуковых скоростях эти акустические волны распространяются как обычные концентрические круги по воде, и мы слышим привычный гул пролетающего самолета. Если же самолет летит на сверхзвуковой скорости, источник каждой следующей волны оказывается удален по траектории движения самолета на расстояние, превышающее то, которое к этому моменту успел покрыть фронт предыдущей акустической волны. Таким образом, волны уже не расходятся концентрическими кругами, их фронты пересекаются и взаимно усиливаются в результате резонанса, имеющего место на линии, направленной под острым углом назад по отношению к траектории движения. И так происходит непрерывно в процессе всего полета на сверхзвуковой скорости, в результате чего самолет оставляет за собой расходящийся шлейф резонансных волн вдоль конической поверхности, в вершине которой находится самолет. Сила звука в этом коническом фронте значительно превышает обычный шум, издаваемый самолетом в воздухе, а сам этот фронт называется ударной волной. Ударные волны, распространяясь в среде, оказывают резкое, а иногда и разрушительное воздействие на материальные объекты, встречающиеся на их пути. При пролете неподалеку сверхзвукового самолета, когда конический фронт ударной волны дойдет до вас, вы услышите и почувствуете резкий, мощный хлопок, похожий на взрыв, — звуковой удар. Не бойтесь, это не взрыв, а результат резонансного наложения акустических волн: за долю мгновения вы слышите весь суммарный шум, изданный самолетом за достаточно длительный промежуток времени.

Конус фронта ударной волны называется конусом Маха. Угол ф между образующими конуса Маха и его осью (см. рисунок) определяется формулой:

sin ф = u/v,

где u — скорость звука в среде, v — скорость объекта. Отношение скорости движущегося объекта к скорости звука в среде называется числом Маха: M = v/u. (Соответственно, sin ф = 1/M.) Нетрудно видеть, что у самолета, летящего со скоростью звука, М = 1, а при сверхзвуковых скоростях число Маха больше 1.

Ударные волны возникают не только в акустике. Например, если элементарная частица движется в среде со скоростью, превы-

 

шающей скорость распространения света в этой среде, возникает ударная световая волна (см. излучение черенкова). По этому излучению физики сегодня выявляют элементарные частицы и определяют скорость их движения.

 

ЭРНСТ МАХ (Ernst Mach, 1838-1916) — австрийский физик. Родился в Моравии, в Турасе (ныне Туржани, Чехия), образование получил от отца, уделявшего повышенное внимание развитию у сына как теоретических знаний, так и практических навыков. Докторскую степень получил в Венском университете в 1860 году, где начиная с 1895 года и до конца жизни был профессором истории науки. Основное признание

Мах заслужил именно за свои труды в области философии и истории науки, однако немаловажен и его вклад в психологию и физику. Помимо исследования ударных волн ученый сформулировал один из важнейших постулатов теоретической механики, получивший название «принцип Маха» и гласящий, что инерция объекта происходит от его гравитационного взаимодействия с совокупной массой остальной Вселенной.


Дата добавления: 2015-08-18; просмотров: 95 | Нарушение авторских прав


Читайте в этой же книге: Естественный отбор | Ископаемые свидетельства | Несовершенство замысла | Которые привели его к созданию теории эволюции. | Теплопроводность | Третье начало | Энергия положения | Термодинамика, второе начало | Тьюринга | Закон кюри |
<== предыдущая страница | следующая страница ==>
Три закона робототехники| Теория струн

mybiblioteka.su - 2015-2024 год. (0.008 сек.)