Читайте также:
|
|
Мы знаем, что скорость света в среде меньше скорости света в вакууме. Это свойство обычно находит отражение в так называемом коэффициенте или показателе преломления среды, который определяется соотношением:
n = c/v,
где с — скорость распространения света в вакууме, а v — в среде.
Свет затормаживается в среде в результате постоянных взаимодействий с электронными оболочками атомов. Ситуацию здесь можно сравнить с дорожным движением: если скорость света в вакууме уподобить движению по идеально прямому и совершенно свободному загородному шоссе, на котором машина может всю дорогу ехать на максимальной скорости, то скорость света в среде можно представить себе как движение по большому городу: световой луч-машина раз за разом притормаживает на очередном перекрестке-атоме. В результате скорость света в веществе оказывается непременно ниже скорости света в вакууме. Коэффициент преломления, в частности стекла, составляет около 1,5; следовательно, в стекле свет распространяется примерно на треть медленнее, чем в вакууме.
О том, что не только разные материалы имеют разные коэффициенты преломления, но и в одном материале световые лучи разных цветов преломляются по-разному, известно достаточно давно. Это явление получило название дисперсии света. По закону снел-лиуса угол преломления луча после его попадания в прозрачную среду зависит от коэффициента преломления этой среды, соответственно дисперсия проявляет себя тем, что лучи разных цветов, обладая разными коэффициентами преломления в среде, преломляются под разными углами. В большинстве материалов, в частности в стекле, наблюдается нормальная дисперсия, при которой показатель преломления обратно пропорционален длине волны: чем короче волна, тем выше коэффициент преломления. (У некоторых веществ, однако, имеются диапазоны длин световых волн, в которых наблюдается аномальная дисперсия: короткие волны преломляются слабее длинных.)
Именно этот принцип лежит в основе действия призмы. При попадании обычного «белого» (а в действительности содержащего все цвета спектра) света, например, солнечных лучей на призму луч начинает расщепляться сразу после пересечения границы воздуха со стеклом, поскольку фиолетовые лучи преломляются сильнее всего, а красные — слабее всего. В результате после пересечения светом второй границы стекла с воздухом белый луч оказывается расщепленным на составляющие его цветные лучи. В результате мы наблюдаем на экране или стене знакомую картину радужного спектра.
Кстати, о радуге: она тоже возникает в результате дисперсии света на дождевых каплях. Попадая внутрь капли, солнечный луч
преломляется, внутри капли происходит его дисперсия, затем разложенный на спектр луч отражается от задней полусферы капли, на обратном пути происходит его дальнейшая дисперсия, и, наконец, луч выходит обратно через переднюю поверхность капли, будучи разложенным на радужный спектр солнечного света. Именно поэтому мы и наблюдаем радугу лишь тогда, когда Солнце находится с одной стороны от нас, а дождь идет с другой стороны. Из-за дисперсии каждый цвет в отраженных лучах собирается под своим строго определенным углом, и это объясняет, почему радуга образует в небе дугу. Цвета в дождевой радуге разделены не очень четко, поскольку капли имеют разный диаметр, и на одних каплях дисперсия проявляется сильнее, на других — слабее. Воспринимаемая же нашим зрением радуга образуется совокупностью отраженных лучей от всех дождевых капель, пролетающих в момент наблюдения через зону отражения.
Более редкое явление двойной радуги наблюдается, когда внутри части дождевых капель световой луч отражается от внутренней поверхности дважды, а совсем редкая тройная радуга свидетельствует об эффекте тройного внутреннего отражения луча в части дождевых капель.
Принципиальные физические причины дисперсии удалось объяснить только в рамках современной атомной теории строения материи и взаимодействия света с веществом. Подобно лучам всех диапазонов спектра электромагнитного излучения, световые лучи представляют собой поперечные электромагнитные волны. Электрическое поле, возбуждаемое в такой волне, согласно уравнениям максвелла воздействует на электроны атомов, возбуждая их. Возбуждаясь, электрон поглощает фотон определенной частоты, чтобы почти сразу же испустить в точности такой же фотон и вернуться в нормальное состояние на нижней незанятой орбитали своего атома. Таким образом, свет в среде распространяется посредством цепочки непрерывных поглощений и испусканий фотонов. именно этим обусловлено замедление распространения света в среде.
Электроны в атомах — пленники своих ядер. Для понимания некоторых явлений субатомного мира полезно представить себе электроны прикрепленными к ядрам на жестких пружинах. Реакция электрона на воздействии электрического поля световой волны зависит от того, как частота волны соотносится с частотами собственных колебаний этой воображаемой пружины. Расчеты показывают, что чем короче длина световой волны, тем выше вероятность ее попадания в резонанс с собственными частотами возбуждения электронов и, соответственно, тем чаще электроны будут поглощать и вновь испускать фотоны соответствующей частоты, задерживая тем самым распространение света этой частоты. Доказано, что интенсивность испускания таких вторичных световых волн атомами пропорциональна длине волны в четвертой степени!
Следствием этого же эффекта взаимодействия света с атомами является и рассеяние света в среде. Свет, не вступавший во взаимодействие с атомами, доходит до нас напрямую. Поэтому, когда мы глядим не на источник света, а на рассеянный свет от этого источника, мы наблюдаем в нем преобладание коротких волн синей части спектра.
Вот почему небо выглядит синим, а Солнце желтоватым! Когда вы смотрите на небо в стороне от Солнца, вы видите там рассеянный солнечный свет, где преобладают короткие волны синей части спектра. Когда же вы смотрите непосредственно на Солнце, вы наблюдает спектр его излучения, из которого путем рассеяния на атомах воздуха удалена часть синих лучей, и изначально белый спектр Солнца смещается в желто-красную область при прохождении через атмосферу. (Только никогда не пытайтесь удостовериться в этом собственными глазами, глядя прямо на Солнце. Интенсивность прямых солнечных лучей настолько высока, что даже секундного взгляда на Солнце в зените достаточно, в лучшем случае, для временного ослепления, а в худшем — для хронических функциональных нарушений зрения.) На закате, когда солнечные лучи совершают значительно более длительное путешествие сквозь атмосферу, Солнце кажется нам и вовсе красным, поскольку в этом случае рассеиваются и исчезают из его спектра не только синие, но и зеленые, и желтые лучи.
Дата добавления: 2015-08-18; просмотров: 65 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
ЧАНДРАСЕКАРА | | | Дифракция |