Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Второй закон Рауля

Читайте также:
  1. A) законом и судом
  2. A) на основе её положений развивается текущее законодательство, принимаются нормативные акты
  3. IV. Разработка законопроектов
  4. Quot;Смертельні" нормативи для "Швидкої". Як лікарям живеться з новим законом
  5. V. Российская империя во второй половине XIX - начале XX вв.
  6. XI. КРЫМ ВО ВТОРОЙ ТУРЕЦКОЙ ВОЙНЕ И ПОСЛЕ НЕЕ
  7. А) федеральными законами

Тот факт, что давление паров над раствором отличается от давления паров над чистым растворителем, существенно влияет на процессы кристаллизации и кипения. Из первого закона Рауля выводятся два следствия, касающиеся понижения температуры замерзания и повышения температуры кипения растворов, которые в объединённом виде известны как второй закон Рауля.

Понижение температуры кристаллизации растворов

Условием кристаллизации является равенство давления насыщенного пара растворителя над раствором давлению пара над твёрдым растворителем. Поскольку давление пара растворителя над раствором всегда ниже, чем над чистым растворителем, это равенство всегда будет достигаться при температуре более низкой, чем температура замерзания растворителя. Так, океанская вода начинает замерзать при температуре около минус 2 °C.

Разность между температурой кристаллизации растворителя fr и температурой начала кристаллизации раствора Tfr есть понижение температуры кристаллизации.

Понижение температуры кристаллизации бесконечно разбавленных растворов не зависит от природы растворённого вещества и прямо пропорционально моляльной концентрациираствора.

Поскольку по мере кристаллизации растворителя из раствора концентрация последнего возрастает, растворы не имеют определённой температуры замерзания и кристаллизуются в некотором интервале температур.

Повышение температуры кипения растворов

Жидкость кипит при той температуре, при которой общее давление насыщенного пара становится равным внешнему давлению. Если растворённое вещество нелетуче (то есть давлением его насыщенных паров над раствором можно пренебречь), то общее давление насыщенного пара над раствором равно парциальному давлению паров растворителя. В этом случае давление насыщенных паров над раствором при любой температуре будет меньше, чем над чистым растворителем, и равенство его внешнему давлению будет достигаться при более высокой температуре. Таким образом, температура кипения раствора нелетучего вещества Tb всегда выше, чем температура кипения чистого растворителя при том же давлении b.

Повышение температуры кипения бесконечно разбавленных растворов нелетучих веществ не зависит от природы растворённого вещества и прямо пропорционально моляльной концентрации раствора

Криоскопия

Криоскопическая и эбулиоскопическая константы

Коэффициенты пропорциональности К и Е в приведённых выше уравнениях — соответственно криоскопическая и эбулиоскопическая постоянные растворителя, имеющие физический смысл понижения температуры кристаллизации и повышения температуры кипения раствора с концентрацией 1 моль/кг. Для воды они равны 1.86 и 0.52 K·моль−1·кг соответственно. Поскольку одномоляльный раствор не является бесконечно разбавленным, второй закон Рауля для него в общем случае не выполняется, и величины этих констант получают экстраполяциейзависимости из области малых концентраций до m = 1 моль/кг.

Для водных растворов в уравнениях второго закона Рауля моляльную концентрацию иногда заменяют молярной. В общем случае такая замена неправомерна, и для растворов, плотностькоторых отличается от 1 г/см³, может привести к существенным ошибкам.

Второй закон Рауля даёт возможность экспериментально определять молекулярные массы соединений, неспособных к диссоциации в данном растворителе; его можно использовать также для определения степени диссоциации электролитов.

Растворы электролитов

Законы Рауля не выполняются для растворов (даже бесконечно разбавленных), которые проводят электрический ток — растворов электролитов. Для учёта этих отклонений Вант-Гофф внёс в приведённые выше уравнения поправку — изотонический коэффициент i, неявно учитывающий диссоциацию молекул растворённого вещества:

;

Неподчинение растворов электролитов законам Рауля и принципу Вант-Гоффа послужили отправной точкой для создания С. А. Аррениусом теории электролитической диссоциации.

 

Эбулиоскопия

Эбулиоскопия (от лат. ebulio — вскипаю) — метод исследования растворов, основанный на измерении повышения их температуры кипения по сравнению с чистым растворителем. Используется для определения молекулярной массы растворенного вещества, активности растворителя, степени диссоциации (или изотонического коэффициента).

Температура кипения жидкости — такая температура, при которой давление пара над жидкостью равно внешнему давлению. В то же время давление пара над раствором нелетучего вещества практически полностью определяется давлением пара растворителя и, в соответствии с законом Рауля, может быть выражено уравнением:

где x 1 — мольная доля растворителя.

Видно, что при повышении концентрации растворенного вещества давление пара над раствором будет снижаться, а следовательно, при неизменном внешнем давлении, будет расти температура кипения.

С учетом уравнения Клапейрона — Клаузиуса можно показать[1], что изменение температуры кипения раствора (Δ Tboil) может быть рассчитано по формуле:

где Δ Hboil — энтальпия испарения;

M 1 — молярная масса растворителя;

n 2 — моляльная концентрация растворенного вещества.

Дробь в квадратных скобках в этом выражении зависит только от свойств растворителя — это так называемая эбулиоскопическая константа растворителя ε. Она равна повышению температуры кипения одномоляльного раствора.

Если известны изменение температуры кипения и концентрация раствора, можно определить молярную массу растворенного вещества:

где a — число грамм растворенного вещества на 1000 г растворителя. Этот метод применим для разбавленных растворов нелетучих веществ и неэлектролитов.

Эбулиоскопический метод позволяет судить о состоянии вещества в растворах электролитов, так как для последних:

;

где i — изотонический коэффициент.

С помощью эбулиоскопии можно определить и активность растворителя, в соответствии с формулой[2]:

 

 

Растворы электролитов и неэлектролитов

Электролиты - вещества, проводящие в расплавах или водных растворах электрический ток. Электролиты в расплавах или водных растворах диссоциируют на ионы. Неэлектролиты - вещества, водные растворы и расплавы которых не проводят электрический ток, так как их молекулы не диссоциируют на ионы. Электролиты при растворении в подходящих растворителях (вода, другие полярные растворители) диссоциируют на ионы. Сильное физико-химическое взаимодействие при растворении приводит к сильному изменению свойств раствора (химическая теория растворов).Вещества, распадающиеся на ионы в растворах или расплавах и потому проводящие электрический ток, называются электролитами.

Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами.

К электролитам относятся кислоты, основания и почти все соли, к неэлектролитам — большинство органических соединений, а также вещества, в молекулах которых имеются только ковалентные неполярные или малополярные связи.

 

Электролиты – вещества, которые при растворении подвергаются диссоциации на ионы. В результате раствор приобретает способность проводить электрический ток, т.к. в нем появляются подвижные носители электрического заряда. Например, при растворении в воде уксусная кислота диссоциирует на ион водорода и ацетат-ион:

CH3COOH H+ + CH3COO

Необходимым условием, определяющим возможность процесса электролитической диссоциации, является наличие в растворяемом веществеионных * или полярных связей *, а также достаточная полярность * самого растворителя *. Количественная оценка процесса электролитической диссоциации дается двумя величинами: степенью диссоциации  и константой диссоциации K.

Степенью диссоциации () электролита называется отношение числа его молекул, распавшихся на ионы, к общему числу молекул электролита в растворе, т. е. . Так, если C =0,1 моль/л, а концентрация диссоциированной части вещества С д=0,001 моль/л, то для растворенного вещества =0,001/0,1=0,01, или =1%. Степень электролитической диссоциации зависит как от природы растворенного вещества, так и от концентрации раствора, увеличиваясь с его разбавлением.

Электролиты можно разделить на две большие группы: сильные и слабые. Сильные электролиты диссоциируют практически полностью. К сильным электролитам относятся, например, H2SO4, HCl, HNO3, H3PO4, HClO3, HClO4, KOH, а также хорошо растворимые соли: NaCl, KBr, NH4NO3и др. Для слабых электролитов устанавливается равновесие между недиссоциированными молекулами и ионами. К слабым электролитам относятся плохо растворимые соли (см. таблицу растворимости), вода и большинство органических кислот (например, уксусная CH3COOH, муравьинаяHCOOH), а также неорганические соединения: H2CO3, H2S, HCN, H2SiO3, H2SO3, HNO2, HClO, HCNO, NH4OH и др.

 

В зависимости от концентрации электролита выделяют область разбавленных растворов, которые по своей структуре близки к структуре чистого растворителя, нарушаемой, однако, присутствием и влиянием ионов; переходную область и область концентрирированных растворов. Весьма разбавленные растворы слабых электролиты по своим свойствам близки к идеальным растворам и достаточно хорошо описываются классической теорией электролитической диссоциации. Разбавленные растворы сильных электролитов заметно отклоняются от свойств идеальных растворов, что обусловлено электростатическим межионным взаимодействием. Их описание проводится в рамках теории Дебая-Хюккеля, которая удовлетворительно объясняет концентрационную зависимость термодинамических свойств - коэффициентов активности ионов, осмотических коэффициентов и других, а также неравновесных свойств -электропроводности, диффузии, вязкости.

 

Значения pH в растворах различной кислотности

Вопреки распространённому мнению, pH может изменяться не только в интервале от 0 до 14, а может и выходить за эти пределы. Например, при концентрации ионов водорода [H+] = 10−15 моль /л, pH = 15, при концентрации ионов гидроксида 10 моль /л pOH = −1.

 

Так как при 25 °C (стандартных условиях)[H+] · [OH] = 10−14, то понятно, что при этой температуре pH + pOH = 14.

Так как в кислых растворах [H+] > 10−7, то pH кислых растворов pH < 7, аналогично pH щелочных растворов pH > 7, pH нейтральных растворов равен 7. При более высоких температурах константа электролитической диссоциации воды повышается, соответственно увеличивается ионное произведение воды, поэтому нейтральной оказывается pH < 7 (что соответствует одновременно возросшим концентрациям как H+, так и OH); при понижении температуры, напротив, нейтральная pH возрастает.

 

Закон разбавления Оствальда

Материал из Википедии — свободной энциклопедии

Закон разбавления Оствальда — соотношение, выражающее зависимость эквивалентной электропроводности разбавленного раствора бинарного слабого электролита от концентрации раствора:

Здесь К — константа диссоциации электролита, с — концентрация, λ и λ — значения эквивалентной электропроводности соответственно при концентрации с и при бесконечном разбавлении. Соотношение является следствием закона действующих масс и равенства

где α — степень диссоциации.

Закон разбавления Оствальда выведен В.Оствальдом в 1888 и им же подтвержден опытным путём. Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.

 

Гидролиз

Гидро́лиз (от др.-греч. ὕδωρ — вода и λύσις — разложение) — один из видов химических реакций сольволиза, где при взаимодействии веществ с водой происходит разложение исходного вещества с образованием новых соединений. Механизм гидролиза соединений различных классов: соли, углеводы, белки, сложные эфиры, жиры и др. имеет существенные различия.


Дата добавления: 2015-08-09; просмотров: 201 | Нарушение авторских прав


Читайте в этой же книге: Идеальные газы | Применение в химии | Изоэнтропийный процесс | Следствия из закона Гесса | Закон действующих масс в химической кинетике | Закон действующих масс в химической термодинамике | Править]Влияние температуры | Влияние концентрации | Объёмная доля | Мольная (молярная) доля |
<== предыдущая страница | следующая страница ==>
Первый закон Рауля| Константа гидролиза

mybiblioteka.su - 2015-2024 год. (0.015 сек.)