Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Эллипсоид Маклорена

Читайте также:
  1. Если применить к той же функции формулу Маклорена
  2. Эллипсоид
  3. Эллипсоид как фигура равновесия

В частном случае , поэтому . Из уравнение (4.6) получим

(4.7)


Полученные уравнения определяют и постоянную и . По-видимому, для любых заданных полуосях эллипсоида вращения можно найти угловую скорость вращения, такую, что данный эллипсоид становится фигурой равновесия.

4.2.3 Модель "планеты Роша"

Под "планетой Роша" мы будем понимать такую фигуру равновесия, в которой вся притягивающая масса сосредоточена в и одной точке -- центре масс, а вектор силы тяжести образуют векторная сумма силы притяжения и центробежной силы. Тогда уравнением "поверхности" такой планеты будет

(4.8)


Рассмотрим, сначала, как выглядит поверхность уровня вблизи начала координат. В этом случае величину можно считать малой, а , наоборот, большой. Пренебрегая в (4.8) вторым слагаемым в левой части формулы, получим . Это уравнение замкнутой поверхности, которая по мере приближения к началу координат становится все более похожей на сферу. Назовем ее псевдосферой.

По мере отдаления от начала координат в плоскости мы достигнем таких точек, в которых сила притяжения и центробежная сила становятся равными и противоположно направленными, то есть , Отсюда . Мы получили уравнение окружности с радиусом, равным Понятно, что во всех точках этой окружности силы тяжести равна нулю.

Если двигаться дальше от начала координат, мы придем к варианту, когда будет большой величиной, а , наоборот, малой. Тогда пренебрегая первым членом в формуле (4.8), получим уравнение поверхности, близкой к круговому цилиндру . Это уже разомкнутая поверхность уровня. Планеты с такой поверхностью существовать не может.

Таким образом, гидростатически равновесная планета может существовать только внутри "полости Роша", где сила тяжести всюду отлична от нуля и направлена по нормали внутрь этой поверхности. Поверхность такой планеты имеет овальную форму, сплюснутую с полюсов.


Дата добавления: 2015-08-13; просмотров: 146 | Нарушение авторских прав


Читайте в этой же книге: Подразделы | Гравитационный потенциал материальной точки | Гравитационный потенциал тела | Свойства гравитационного потенциала | Гравитационный потенциал шара | Потенциал шара во внутренней точке | Гравитационный потенциал однородного шара | Определение характеристик гравитационного поля Земли | Потенциал тяжести | Основные теоремы |
<== предыдущая страница | следующая страница ==>
Эллипсоид как фигура равновесия| Сфероид Клеро

mybiblioteka.su - 2015-2024 год. (0.005 сек.)