Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Переменное напряжение

Читайте также:
  1. В) во сколько раз нормальное напряжение должно быть больше касательного;
  2. В) напряжение, при котором появляются незначительные дефекты (например, микротрещины)
  3. Глава 12. Напряжение
  4. ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЕЙ НАПРЯЖЕНИЕМ ДО 1 КВ (АСИНХРОННЫХ, СИНХРОННЫХ И ПОСТОЯННОГО ТОКА)
  5. Испытание повышенным напряжением промышленной частоты.
  6. Как распознать напряжение
  7. Ключом к запуску всех этих физиологических изменений внутри мышечной клетки является напряжение. Исследования показывают,

Alternate stress

Напряжения, переменные во времени, возникающие в элементах конструкции под действием нагрузок, переменных по величине или направлению, а также нагрузок, перемещающихся относительно рассматриваемого элемента.

 

Допускаемое напряжение

Allowable stress

Экспериментально установленное для рассматриваемого материала предельное значение напряжения, деленное на коэффициент запаса прочности.

 

Главное напряжение

Principal stress

Среди множества площадок, которые можно провести через исследуемую точку, имеются три взаимно перпендикулярные площадки, касательные напряжения на которых отсутствуют. Эти площадки и возникающие на них нормальные напряжения называются главными.

 

Эквивалентное (приведенное) напряжение

Equivalent stress

Напряжение одноосного растяжения (сжатия), равноопасного рассматриваемому сложному напряженному состоянию.

Вопрос

Растяжение (сжатие) - это вид деформации стержня, при котором происходит изменение его первоначальной длины.

Растяжение (сжатие) вызывается внешними силами, действующими вдоль оси стержня z. При этом в любом поперечном сечении стержня возникает только одно внутреннее усилие – продольная сила (N), которая является равнодействующей всех внутренних сил, возникающих в каждой точке этого сечения и направленных параллельно оси стержня.

Вопрос

Если продольные силы, возникающие в различных поперечных сечениях стержня, неодинаковы, закон их изменения по длине стержня представляется в виде графика N(z), называемого эпюрой продольных сил. Эпюра продольных сил необходима для оценки прочности стержня и строится для того, чтобы найти опасное сечение (поперечное сечение, в котором продольная сила принимает наибольшее значение ).

КАК СТРОИТЬ ЭПЮРУ ПРОДОЛЬНЫХ СИЛ?

Для построении эпюры N используется метод сечений. Продемонстрируем его применение на примере (рис. 2.1).

Определим продольную силу N, возникающую в намеченном нами поперечном сечении стержня.

Разрежем стержень в этом месте и мысленно отбросим нижнюю его часть (рис. 2.1, а). Далее мы должны заменить действие отброшенной части на верхнюю часть стержня внутренней продольной силой N.

Для удобства вычисления ее значения закроем рассматриваемую нами верхнюю часть стержня листком бумаги. Напомним, что продольное усилие N, возникающее в поперечном сечении, можно определить как алгебраическую сумму всех продольных сил, действующих на отброшенную часть стержня, то есть на ту часть стержня, которую мы видим.

При этом применяем следующее правило знаков: силы, вызывающие растяжение оставленной части стержня (закрытой нами листком бумаги) входят в упомянутую алгебраическую сумму со знаком «плюс», а силы, вызывающие сжатие – со знаком «минус».

Итак, для определения продольной силы N в намеченном нами поперечном сечении необходимо просто сложить все внешние силы, которые мы видим. Так как сила кН растягивает верхнюю часть, а сила кН ее сжимает, то кН.

Знак «минус» означает, что в этом сечении стержень испытывает сжатие.

Можно найти опорную реакцию R (рис. 2.1, б) и составить уравнение равновесия для всего стержня, чтобы проверить результат:

или

кН.

Теперь заменим действие отброшенной нижней части неизвестным внутренним усилием N, направив его, например, от сечения, что соответствует растяжению.

Уравновешиваем оставленную нами верхнюю часть стержня:

кН.

Знак «минус» сигнализирует, что мы не угадали направление продольного усилия N. Оно будет не растягивающим, как мы предполагали, а сжимающим.

Таким образом, мы получили тот же самый результат.

Вопрос

Пусть в результате деформации первоначальная длина стержня l станет равной. l 1. Изменение длины

называется абсолютным удлинением стержня.

Отношение абсолютного удлинения стержня к его первоначальной длине называется относительным удлинением ( – эпсилон) или продольной деформацией. Продольная деформация – это безразмерная величина. Формула безразмерной деформации:

При растяжении продольная деформация считается положительной, а при сжатии – отрицательной.

Поперечные размеры стержня в результате деформирования также изменяются, при этом при растяжении они уменьшаются, а при сжатии – увеличиваются. Если материал является изотропным, то его поперечные деформации равны между собой:

.

Опытным путем установлено, что при растяжении (сжатии) в пределах упругих деформаций отношение поперечной деформации к продольной является постоянной для данного материала величиной. Модуль отношения поперечной деформации к продольной, называемый коэффициентом Пуассона иликоэффициентом поперечной деформации, вычисляется по формуле:

Для различных материалов коэффициентПуассона изменяется в пределах . Например, для пробки , для каучука , для стали , для золота .

 

Вопрос

Для большинства конструкционных материалов между напряжением () и продольной деформацией() до определенного предела нагружения существует линейная зависимость

Закон Гука: Напряжение пропорционально деформации.

Впервые Закон Гука был опубликован в виде анаграммы английским ученым Робертом Гуком (1635 – 1703 гг.). При правильной расстановке букв анаграмма читается: «Каково удлинение, такова и сила».

К такому же заключению в 1680 г., независимо от Гука, пришел французский ученыйЭдмон Мариотт.

Коэффициент пропорциональности (E) в формуле закона Гука называется модуль продольной упругости или модуль Юнга – по имени английского ученого Томаса Юнга. Значение модуля Юнга для данного материала устанавливается опытным путем. В справочниках обычно приводятся среднее значение модуля Юнга.

Необходимо отметить, что некоторые материалы не подчиняются законуГука, например, кожа, ткани. Такие материалы, как, например, чугун, только с некоторым приближением можно считать подчиняющимся закону Гука. Но даже и те материалы, которые подчиняются закону Гука, перестают ему следовать при достижении деформации определенного значения.

Из закона Гука видно: чем больше модульЮнга, тем меньше (при том же значении напряжения) деформация материала. Следовательно, модуль продольной упругости характеризует жесткость материала при растяжении (сжатии). Из формулы закона Юнга видно, что модульЮнга измеряется в тех же единицах, что и нормальное напряжение ().

Так, например, для всех марок сталей МПа.

 

Вопрос

Для большинства конструкционных материалов между напряжением () и продольной деформацией() до определенного предела нагружения существует линейная зависимость

Закон Гука: Напряжение пропорционально деформации.

Впервые Закон Гука был опубликован в виде анаграммы английским ученым Робертом Гуком (1635 – 1703 гг.). При правильной расстановке букв анаграмма читается: «Каково удлинение, такова и сила».

К такому же заключению в 1680 г., независимо от Гука, пришел французский ученыйЭдмон Мариотт.

Коэффициент пропорциональности (E) в формуле закона Гука называется модуль продольной упругости или модуль Юнга – по имени английского ученого Томаса Юнга. Значение модуля Юнга для данного материала устанавливается опытным путем. В справочниках обычно приводятся среднее значение модуля Юнга.

Необходимо отметить, что некоторые материалы не подчиняются законуГука, например, кожа, ткани. Такие материалы, как, например, чугун, только с некоторым приближением можно считать подчиняющимся закону Гука. Но даже и те материалы, которые подчиняются закону Гука, перестают ему следовать при достижении деформации определенного значения.

Из закона Гука видно: чем больше модульЮнга, тем меньше (при том же значении напряжения) деформация материала. Следовательно, модуль продольной упругости характеризует жесткость материала при растяжении (сжатии). Из формулы закона Юнга видно, что модульЮнга измеряется в тех же единицах, что и нормальное напряжение ().

Так, например, для всех марок сталей МПа.

Вопрос

Механические характеристики материала определяются в результате испытания образца на специальных прессах. Форма образца может быть различной, но чаще всего стержень с участком постоянного поперечного сечения (круглого или прямоугольного) длиной . Концы образца имеют специальные утолщения для их закрепления в испытательной машине.

Перед началом испытания материала на растяжение замеряется площадь поперечного сечения () средней части образца. Значение растягивающей силы (P) и удлинения его средней части () в каждый момент нагружения определяются специальными устройствами. При испытании нагрузка увеличивается медленно и плавно.

Современные испытательные машины снабжены записывающим прибором, который при испытании образца автоматически вычерчивает график зависимости между нагрузкой (P) и абсолютным удлинением (). График называется диаграммой растяжения (или диаграмма Бернулли).

Рассмотрим диаграмму растяжения для стали марки Ст. 3 (рис. 2.3). Эта диаграмма характеризует поведение данного образца, но не материала, из которого он сделан.

В начальной стадии испытания, до точки А с ординатой , зависимость между силой (P) и удлинением () носит линейный характер, что свидетельствует о линейной деформируемости образца. Затем диаграмма искривляется и при некотором значении растягивающей силы наблюдается значительный рост удлинения образца без увеличения нагрузки (текучесть материала). Практически горизонтальный участок диаграммы BC называется площадкой текучести, а точка B – критической точкой диаграммы.

При некотором значении растягивающей силы , соответствующем критической точке B (см. рис. 2.3), на поверхности образца, если он, например, полирован, заметно появление сначала нескольких полосок, параллельных между собой и расположенных под углом примерно к оси образца. Далее появляется вторая система линий, пересекающая первую и наклоненную к оси под тем же углом, что и первая. Такая система сопряженных линий называется линиями Людерса – Чернова, представляющие собой следы сдвигов частиц материала. Направления линий Людерса-Чернова соответствует площадкам, на которых при растяжении возникают наибольшие касательные напряжения.

За точкой C диаграммы удлинение образца начинает расти быстрее нагрузки. Число линий Людерса – Чернова растет, они сливаются друг с другом и, наконец, теряют ясность своих очертаний. Этот участок диаграммы растяжения называется зоной упрочнения.

В наивысшей точке диаграммы D при силе равной на образце внезапно появляется местное сужение – шейка, которая представляет собой результат накопления деформаций сдвига.

Сопротивление образца растяжению, после образования шейки, падает и его разрыв происходит в точке K при нагрузке:

.

При разрыве образца, как правило, появляется поперечная трещина в центре тяжести поперечного сечения (посредине шейки), а остальная часть сечения скалывается под углом к оси образца так, что на одной части разорванного образца образуется выступ, а на другой – кратер.

Линия разгрузки образца KL оказывается прямой и параллельной начальному участку диаграммы ОА. Следовательно, полная деформация образца состоит из двух частей: упругой, исчезающей после снятия нагрузки, и остаточной (пластической).

 

Строительные материалы (бетон, цемент) в основном испытывают на сжатие. Дерево испытывают на сжатие как вдоль, так и поперек волокон. Сталь испытывают на сжатие значительно реже, чем на растяжение.

Образцы для испытания на сжатие имеют, как правило, форму кругового цилиндра с отношением высоты образца к диаметру не более 3.

Для стали Ст. 3 диаграмма сжатия вплоть до предела текучести почти полностью повторяетдиаграмму растяжения, то есть .

Различие начинает сказываться после наступления текучести. Площадка текучести при сжатии менее четко выражена, чем при растяжении.

При больших деформациях различие становится особенно ощутимым, и в первую очередь из-за того, что сжатие сопровождается увеличением площади поперечного сечения образца, вследствие чего испытание требует постоянно возрастающей нагрузки.

 
 

Следовательно, при сжатии пластичного материала получить такую характеристику, как предел прочности, не представляется возможным. Исследуемый образец, не претерпевая разрушения, расплющивается, и дальнейшее испытание на сжатие ограничивается возможностями пресса.

В расчетной практике предел прочности пластичного материала на сжатие условно принимается таким же, как и на растяжение.

Диаграмма сжатия хрупкого материала по виду напоминает диаграмму растяжения, но предел прочности на сжатие, как правило, в несколько раз больше, чем на растяжение (). Разрушение образца при сжатии происходит обычно путем сдвига одной части относительно другой, происходящим примерно под углом к оси образца.

Наглядное представление о сравнительных механических характеристиках низкоуглеродистой стали и серого чугуна при растяжении и сжатии дают диаграммы, показанные на рис. 2.5.

Вопрос

Применяемые в инженерной практике материалы можно разделить на 2 группы: пластичные, которые разрушаются после появления значительных остаточных деформаций и хрупкие, которые разрушаются при весьма малых деформациях.

 

Это деление является условным, ибо один и тот же материал в зависимости от характера напряженного состояния, температуры и скорости деформирования может вести себя, как пластичный или как хрупкий. Поэтому при решении задач по сопромату правильнее говорить о пластичном или хрупком состоянии материала.

 

Основные механические характеристики пластичного материала

(например, малоуглеродистой стали) определяются при испытании на растяжение.

На рис. 6,а показана типичная диаграмма растяжения образца из малоуглеродистой стали. Диаграмма характеризует поведение данного индивидуального образца с его конкретными размерами. Для того тобы получить механические характеристики исследуемого материала, необходимо исключить влияние абсолютных размеров образца. С этой целью диаграмму перестраивают в координатах

где Ао и l - соответственно начальная площадь поперечного сечения и начальная расчетная длина образца (рис. 6 б).

 

Характер диаграммы после такой.перестройки сохраняется, изменяется лишь масштаб. Эта диаграмма называется диаграммой растяжения материала или диаграммой напряжений, и ее. ординаты дают величины механических характеристик исследуемого материала. В начальной стадии испытания (до точки А с координатой Fпц) зависимость между силой и удлинением линейна, т.е. справедлив закон Гука. Участок диаграммы ОА называется зоной пропорциональности. При растягивающей силе Fу, почти не отличающейся от Fпц, в образце возникают первые остаточные деформации. Участок 0В - зона упругости. При достижении растягивающей силой значения Fт (точка С) наблюдается рост удлинения без увеличения нагрузки. Это явление называется текучестью металла. Соответствующий участок диаграммы (почти горизонтальная линия) называется площадкой текучести.

В этой стадии деформации полированная поверхность образца становится матовой и на ней можно обнаружить сетку линий, наклоненных к оси образца под углом примерно 45°. Это линии Людерса-Чернова, представляющие собой следы сдвигов частиц материала. Направление указанных линий соответствует площадкам, на которых при растяжении образца возникают наибольшие касательные напряжения.

 

По окончании стадии текучести материал вновь начинает сопротивляться деформации, здесь связь между силой и удлинением не линейна: удлинение растет быстрее нагрузки. Этот участок диаграммы

(СД) называют зоной упрочнения. При силе примерно равной Fmax на образце появляется местное утоньшение - шейка, в результате сопротивление образца падает и его разрыв происходит при силе, меньшей Fпч. Участок диаграммы ДЕ - зона локализации деформаций. При решении задач по сопромату наиболее важням является участок, при котором деформация прямопропрциональна нагрузке.

Вопрос

Понятие диаграммы растяжения встречается в лекции Испытание материала на растяжение. Диаграмма растяжения для разных материалов имеет неодинаковый вид. На рис. 2.4 из лекции по ссылке выше приведена диаграмма растяжения для стали Ст. 3. Этот материал относится к пластичным материалам, которые имеют площадку текучести, и разрушаются при больших остаточных деформациях.

Необходимо, правда, отметить, что не для всех пластичных материалов площадка текучести имеет четко выраженный характер. Для таких материалов вводится понятие условного (или технического) предела текучести, представляющего собой напряжение, которое возникает в материале образца при относительном удлинении, равном 0,2 %. Иногда условный предел текучести обозначают .

Заметим, что пластичность – это положительное свойство материала. Она играет большую роль в обеспечении безопасности и надежности конструкций.

Пластические свойства материала оцениваются следующими двумя характеристиками, которые также определяют при испытании на растяжение:

относительным остаточным удлинением образца при разрыве (%):

,

где – конечная длина расчетной части образца;

относительным поперечным сужением образца при разрыве(в %):

,

где – площадь поперечного сечения образца в месте разрыва.

Но существуют материалы, например чугун, которые характерны тем, что они вообще не имеют площадки текучести, и их разрушение происходит без образования шейки (диаграмма растяжениядля них обрывается сразу же после достижения предела прочности) и при очень малых остаточных деформациях (хрупкие материалы).

Вопрос

Срез - это непосредственное разрушение материала стержня, происходящее в результате деформации сдвига.

Под сдвигом понимается, угловая деформация или вид напряженного состояния – чистый сдвиг.

При проверке прочности соединений предпочтительнее говорить: «расчет на срез». Если речь онапряженном состоянии, то правильнее говорить: «напряженное состояние при сдвиге».

Вопрос

Установлено: касательные напряжения пропорциональны углу сдвига в определенных пределахупругой деформации сдвига. Соотношение - формула закона Гука при сдвиге.

Коэффициент пропорциональности G в формуле закона Гука при сдвиге - модуль сдвига. Модуль сдвига измеряется в МПа, кН/см2, кгс/см2, кгс/мм2. Угол сдвига –безразмерная величина.

Модуль сдвига (G) – это физическая постоянная для материала, характеризующая жесткость при сдвиге. Значение модуля сдвига (G) может быть определено экспериментально.

Вопрос

Смятие- -вид местной пластической деформации, возникающий при сжатии твердых тел, в местах их контакта.

 

Вопрос

СТАТИЧЕСКИЕ МОМЕНТЫ СЕЧЕНИЯ
 
 
При определении положения центра тяжести сечения необходимо определять значения статических моментов этого сечения.
Рис. 4.3
Статическими моментами ппощади сечения относительно осей X и У (рис.4.3) называются определенные интегралы вида:
где F - площадь сечения; X и у - координаты элемента площади dF.
Если известно положение центра тяжести сечения (рис. 4.4). то статические моменты сечения могут быть подсчитаны по простым формулам, без взятия интегралов, а именно
где Xc и Yc - координаты центра тяжести сечения.
Из выражений (2) можно определить координаты центра тяжести сечения Xc и Yc:
Статический момент сечения относительно оси, проходящей через центр тяжести, равен нулю.
Оси, проходящие через центр тяжести сечения -называются центральными. Центр тяжести сечения лежит на оси симметрии сечения. Если сечение имеет хотя бы две оси симметрии, то центр тяжести лежит на пересечении этих осей.
Для сложного сечения, состоящего из n простейших фигур, координаты центра тяжести сечения определяются по формулам
где Xj и Yj - координаты центров тяжести отдельных фигур сечения.
 

Вопрос

Осевым моментом инерции сечения (second moment of area или second moment of inertia) относительно оси x называется сумма произведений элементарных площадок dA на квадрат их расстояний до данной оси, численно равная интегралу

Jx = Ay 2 dA

И относительно оси y:

Jy = Ax 2 dA


где у — расстояние от элементарной площадки dA до оси х (смотри рисунок),
х — расстояние от элементарной площадки dA до оси у.

Полярным моментом инерции сечения относительно данной точки
(называемого полюсом) называется сумма произведений элементарных площадок dA на квадрат их расстояний до этой точки:

J = A 2 dA


где – расстояние от площадки dA до полюса, относительно которой вычисляется полярный момент инерции.

Центробежным моментом инерции сечения относительно осей x и y называется сумма произведений элементарных площадок dA на их расстояния до этих осей:

Jxy = AxydA


где x,у — расстояние от элементарной площадки dA до осей х и y (смотри рисунок).

Центробежный момент инерции может быть положительным, отрицательным и, в частном случае, равным нулю. Если взаимно перпендикулярные оси x и y или одна из них являются осями симметрии фигуры, то относительно таких осей центробежный момент инерции равен нулю. Jxy =0.

Полярный момент инерции относительно какой – либо точки равен сумме осевых моментов инерции относительно двух взаимно перпендикулярных осей, проходящих через эту точку. J = Jx + Jy

Вопрос


Дата добавления: 2015-08-13; просмотров: 144 | Нарушение авторских прав


Читайте в этой же книге: Объект изучения | ДОПУЩЕНИЯ, СВЯЗАННЫЕ СО СВОЙСТВАМИ МАТЕРИАЛОВ | Тема 4. Техніка невербального спілкування | Ситуація 4 | Ситуація 3 | Тема 7. Імідж ділової людини | Класифікація й ідентифікація машин та обладнання | Вартість робіт з оцінки земельних ділянок визначається індивідуально. | Метод капіталізації доходів | МЕТОДИ ОЦІНКИ ВАРТОСТІ БІЗНЕСУ |
<== предыдущая страница | следующая страница ==>
ВНУТРЕННИЕ СИЛЫ В МЕТОДЕ СЕЧЕНИЙ| Моменты инерции простых сечений.

mybiblioteka.su - 2015-2024 год. (0.024 сек.)